Sur la théorie des équations differentielles linéaires.

1 12 G. FLOQUET. est alors (n~ 85) de la forme Ceax, c e'tant constant, comme C. Or on a ] dxr-Cf ) dX Z= f Z-IId dX F() dx-( fdx dx, Z,-I, Z, t Zt,' - Z-m / n. -lt d'ou l'on tire Z,,,- f _() cdx -, — - () dx. 111)1-;' dx. La fonction u,_, est done exprimable par des int6grales simples, et il en sera de meme de u,,,., u,,,_3,..., u2 et de u, ouy. Cela est toujours vrai, en particulier, lorsque l'expression P est a coefficients constants. La meme reduction a lieu quand on a Ri1 2 (rx t+ s i,3,...,, Ri etant constant, et generalement quand le rapport z- est integrable. 89. Appliquons la methode precedente a l'integration de 1'equation differentielle d, ( i'(0', -e, - I) r 'p, pi P( )-d2y r(p — i )., -rx ~s dx (rx +s)2 - ou p r, p2, r et s sont des constantes, p, etant diff6rent de p2. L'equation P= o admet les deux solutions lineairement independantes (rx + s)P, et (rx -+- s)P2; on en conclut la decomposition de P en facteurs premiers symboliques P A2 A,, oi l'on a (n 81) A — ~d' I(I —.) Adx' rx + s Les equations A = o et A, = o admettent d'ailleurs respectivement les deux solutions 12- (rx v ), (rx --- s:.

/ 141
Pages

Actions

file_download Download Options Download this page PDF - Pages 96-115 Image - Page 96 Plain Text - Page 96

About this Item

Title
Sur la théorie des équations differentielles linéaires.
Author
Floquet, Gaston.
Canvas
Page 96
Publication
Paris,
1879.
Subject terms
Differential equations, Linear

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr1071.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr1071.0001.001/117

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr1071.0001.001

Cite this Item

Full citation
"Sur la théorie des équations differentielles linéaires." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr1071.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.