Éléments de calcul infinitésimal, par m. Duhamel.

DES LIMITES DE SOMMES. 7 etl si on la designe par u, on aura rx rnY r: u - k y(,J rZ)dZ -t- z ) d(, y,Z z)dyr X(-fZ( x Y z)dz - C, J Xo, v/3-(o JL ZO C etant une constante arbitraire. I1 est facile de voir que le cas de i7 variables se ramadne de la mdme maniere au cas de n - i, pourvu que les coefficients satisfassent aux conditions qui exprinment que les coefficients diflerentiels du second ordre de' la fonction clherchee, pris de toutes les manieres possibles par rapport a deux variables difrfrentes, sont independants de l'ordre des differentiations. Done le probleme est toujours possible lorsque ces conditions sont remplies, et il est toujours ramene a de simples quadratures.

/ 559
Pages

Actions

file_download Download Options Download this page PDF - Pages 62-81 Image - Page 62 Plain Text - Page 62

About this Item

Title
Éléments de calcul infinitésimal, par m. Duhamel.
Author
Duhamel, M. (Jean Marie Constant), 1797-1872.
Canvas
Page 62
Publication
Paris,: Gauthier-Villars,
1874-76.
Subject terms
Calculus

Technical Details

Link to this Item
https://name.umdl.umich.edu/acq9129.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acq9129.0002.001/96

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acq9129.0002.001

Cite this Item

Full citation
"Éléments de calcul infinitésimal, par m. Duhamel." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acq9129.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.