Éléments de calcul infinitésimal, par m. Duhamel.

498 APPENDICE. Soit, comme plus haut, Y(z) I =M N/ —1. Decomposons la surface AMPA en elements infiniment petits, cornP 2 o x pris entre des paralleles aux axes des coordonn6es; multiplions chaque 6elment dx dy par dlM dN /- dM dN) dy dx - 1 dx -y )6 La somme des produits ainsi obtenus, c'est-a-dire r r [dM d\ i- r?M (IN\. (4) J Jr t^d1xdy + dx- I Jdy dy est evidemment nulle, en vertu des deux equations (4), dM dN - - - = o, dy dx dM dN dx - dy On peut decomposer la premiere integrale de la maniere suivante j dj dxdy t J JN dxdy d - dx r di d X 'Jdx; mais on a JdM dxdy dxf M dy. dyx cry =j J,-~J ~Ycr~ En supposant que, pour la valour consideree de x, la parallele a l'axe desy coupe le contour aux points I, 2, 3, 4, et nommant M,, i2, M1,

/ 559
Pages

Actions

file_download Download Options Download this page PDF - Pages 482-501 Image - Page 482 Plain Text - Page 482

About this Item

Title
Éléments de calcul infinitésimal, par m. Duhamel.
Author
Duhamel, M. (Jean Marie Constant), 1797-1872.
Canvas
Page 482
Publication
Paris,: Gauthier-Villars,
1874-76.
Subject terms
Calculus

Technical Details

Link to this Item
https://name.umdl.umich.edu/acq9129.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acq9129.0002.001/517

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acq9129.0002.001

Cite this Item

Full citation
"Éléments de calcul infinitésimal, par m. Duhamel." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acq9129.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.