Éléments de calcul infinitésimal, par m. Duhamel.

430 LIVRE IV. tegrer, et l'on obtient les formules suivantes: S(.4 I)(x4-I 2)...(x4- n) ( x 2) (.t-3)...(4-Z n'-nI)- c s (.X+I) (X +.2)... (X4- n ) + I) n I 4 4 4 (x =- 2) (+ 4- 3)... (.x 4- n +,) I II 2 I I I.2...(nn — -l)2 n -,( +2j(x+3). 4(-+n) en supposant que le premier terme de chacune de ces deux suites corresponde a x o. 316. Passons aux fonctions transcendantes, et cherchons d'abord Sax. Nous avons trouve ax- ax 2: haX. a I et l'on doit avoir Sax - ax-Ax t4- c; done a + Ax Sax _X c. Si le premier terme de la suite correspond a x o, on devra avoir tax I I -r - +c' d'oui c - aAx _ I aAx 317. Determinons encore Ssin(ax - b)$ Scos(ax -+ b). On a S sin(ax 4- b) = sin(a + a Ax b+) + c I / aa Ax - -- cos ax.+ -- - c,. avx \ 2 J $cos(ax+ b)z=cos(a.+ a4 x 4b) +c l. / a2 A.r A sin ax + 4- -+b )+ c. a Ax 2A 2 sin 2

/ 559
Pages

Actions

file_download Download Options Download this page PDF - Pages 422-441 Image - Page 422 Plain Text - Page 422

About this Item

Title
Éléments de calcul infinitésimal, par m. Duhamel.
Author
Duhamel, M. (Jean Marie Constant), 1797-1872.
Canvas
Page 422
Publication
Paris,: Gauthier-Villars,
1874-76.
Subject terms
Calculus

Technical Details

Link to this Item
https://name.umdl.umich.edu/acq9129.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acq9129.0002.001/449

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acq9129.0002.001

Cite this Item

Full citation
"Éléments de calcul infinitésimal, par m. Duhamel." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acq9129.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.