Éléments de calcul infinitésimal, par m. Duhamel.

330 LIVRE IV. qu'on peut d'ailleurs verifier facilement. La valeur de y qui satisfait aux equations (I), (2), (5), et qui est la seule qui puisse y satisfaire, est done /-I r*0 r00 i Y- r F (c) cosamtcosm(x -.) dm dc.. + o m ( x ) d sin amt d f( ----cos-a) Cherchons maintenant si ces integrales doubles sont reductibles, et considerons d'abord la premiere. On peut remplacer cos amt cos m(x - a) par cos m (x - at - a) 4- cosm(x - at - ca) 2 et la partie que nous considerons du second membre de l'equation (5) deviendra 4 f, F (ca)[cos m(.x 4- at - c cos m (x- at - a)] dm d, ou F(. 4- at) 4- F(x- at 2 Passons a la seconde partie, et remplacons-y sinamt osm ( - a) par sin m(. + at - cc) - sin m ( - at - a) elle deviendra alors ( 6) r00f (c) V sin m (x + at -a) sinm(x - at -a) dd (6) din dx. 4^^~ J-ooJ m ]m m 47ra. 00 -.~~~~~~~~~~~~~~~~~~~,

/ 559
Pages

Actions

file_download Download Options Download this page PDF - Pages 322-341 Image - Page 322 Plain Text - Page 322

About this Item

Title
Éléments de calcul infinitésimal, par m. Duhamel.
Author
Duhamel, M. (Jean Marie Constant), 1797-1872.
Canvas
Page 322
Publication
Paris,: Gauthier-Villars,
1874-76.
Subject terms
Calculus

Technical Details

Link to this Item
https://name.umdl.umich.edu/acq9129.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acq9129.0002.001/349

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acq9129.0002.001

Cite this Item

Full citation
"Éléments de calcul infinitésimal, par m. Duhamel." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acq9129.0002.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.