Éléments de calcul infinitésimal, par m. Duhamel.

-96 LIVRE IV. ainsi 0/0 Posant x =y2, il vient f dy00 /z~ 00 2 I e' dy _ w, ou I e-r dy V', r/O t/-00 comme nous l'avions trouve deja par d'autres procedes. 204..Les integrales de premiere espece peuvent se ramener a celles de seconde; ce qui est avantageux en ce que celles-ci ne dependent que d'une seule variable a, tandis que les autres dependent de deux variables p et q. I L'integrale xP-1 ( - -x)q- dx devient, en posant Jo r /O I +y ~ -I - y)P-w~' Jo (l+yJ-J' dont la valeur est, d'apres une formule du nurnero precedent, r(p)r(). r(p + q) on a done l'equation suivante: rIp) r(q) X p-I (i - x) —1 dx -, r(p -+- q) OU (p, q)_ r(p) r(q) r(p ~+- q) fornule tres-simple qui servira a exprimer les fonctions de premni6re espece, au moyen des fonctions r.

/ 559
Pages

Actions

file_download Download Options Download this page PDF - Pages 282-301 Image - Page 282 Plain Text - Page 282

About this Item

Title
Éléments de calcul infinitésimal, par m. Duhamel.
Author
Duhamel, M. (Jean Marie Constant), 1797-1872.
Canvas
Page 282
Publication
Paris,: Gauthier-Villars,
1874-76.
Subject terms
Calculus

Technical Details

Link to this Item
https://name.umdl.umich.edu/acq9129.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acq9129.0002.001/315

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acq9129.0002.001

Cite this Item

Full citation
"Éléments de calcul infinitésimal, par m. Duhamel." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acq9129.0002.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.