Éléments de calcul infinitésimal, par m. Duhamel.

INTAGRATION DES tQUATIONS DIFFERENTIELLES. 285 tique. On trouve pour resultat de cette substitution ax -+ b -+- ay -- b- a(,x + y) + b, ce qui exige que lon ait b = o, d'oui resulte z = ax. La solution la plus generale de la question est donc donnee par la formule x(x)- ax, a etant une constante arbitraire. 197. Cherchons maintenant la fonction determinee par la condition generale ( I) y (x) + T (y) == (xy). Differentiant par rapport a x, il vient / (x) ==: (Xy). Differentiant la nieme equation (i) par rapport a y, on obtient Y' (Y) =-.^ (.xy). De ces deux dernieres on tire x' (x-) -y' (y); done le produit xy' (x) est constant, et si l'on pose. (x) = z, on aura, en designant par a une constante, I z x - =- a; d'ou l'on tire d. a ldx dz 9 z - a 1 x -- b, b etant une nouvelle constante. Substituant dans i'equation (1), on trouve (2) al.x -+ b - a ly -- b — a 1xy -- b; done b=o et z =a1 x, a etant arbitraire.

/ 559
Pages

Actions

file_download Download Options Download this page PDF - Pages 282-301 Image - Page 282 Plain Text - Page 282

About this Item

Title
Éléments de calcul infinitésimal, par m. Duhamel.
Author
Duhamel, M. (Jean Marie Constant), 1797-1872.
Canvas
Page 282
Publication
Paris,: Gauthier-Villars,
1874-76.
Subject terms
Calculus

Technical Details

Link to this Item
https://name.umdl.umich.edu/acq9129.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acq9129.0002.001/304

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acq9129.0002.001

Cite this Item

Full citation
"Éléments de calcul infinitésimal, par m. Duhamel." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acq9129.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.