Éléments de calcul infinitésimal, par m. Duhamel.

INTtGRATION DES EQUATIONS DIFFERENTIELLES. 277 Si ]'on avait regarde e-nx22 coS 2 nx dx comme fonction de m, on aurait trouve dy /2 2 1 dmn m3 n) d'ou C - n Y — e 7n/71. et l'on trouverait /- n% C= / et y e. 2 2nz 190. Considerons, en dernier lieu, l'integrale c/) cos a.x cd et posons I cosaxdx tI I —,2 Nous ne prenons pas immediatement la limite co, pour eviter une difficulte dont 'nouslparlerons tout a l'heure. Differentiant deux fois par rapport a a, ii vient d2y 1 X2 cosaxd.v r sinal -- =- ------ = y y- cosax dx =y- da J0 I -+ 2 a et si l'on fait = oo, on voit que le second membre se presenterait sous une forme indeterminee. I1 faut maintenant integrer l'equation lineaire d2y sinal -_ - -- -=o. da'2 a Si l'on neglige d'abord le dernier terme. on trouvera

/ 559
Pages

Actions

file_download Download Options Download this page PDF - Pages 262-281 Image - Page 262 Plain Text - Page 262

About this Item

Title
Éléments de calcul infinitésimal, par m. Duhamel.
Author
Duhamel, M. (Jean Marie Constant), 1797-1872.
Canvas
Page 262
Publication
Paris,: Gauthier-Villars,
1874-76.
Subject terms
Calculus

Technical Details

Link to this Item
https://name.umdl.umich.edu/acq9129.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acq9129.0002.001/296

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acq9129.0002.001

Cite this Item

Full citation
"Éléments de calcul infinitésimal, par m. Duhamel." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acq9129.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.