Éléments de calcul infinitésimal, par m. Duhamel.

DES LIMITES DE SOMMES. 89 on aura V/dx2 dy2 - dy / + y La longueur de l'arc dont les extremites correspondent a yo ety aura done pour expression - dyV y p2 - [ y+ -2+p2 +P21 (y + y —) c] - Si I'on veut faire commencer l'arc au sommet, on aura C -plp, et l'expression de cet arc sera y ys2 +- p2 P + ( r y2 +p2) 2p 2 p Ellipse. - L'equation de l'ellipse a2y2 b2x2 a2b2 donne dy _ b2X dx a2y /a2_ e2x ds =V d2 ~+ dy2 =dxV a_ x2 en ddsignant a2 '- b2 par ae. L'abscisse x etant toujours moindre que a, on peut poser x — asinf, d'oui dx a coscp d, d == ad? /I- e2 sin2'. Pour integrer cette expression, on developpera le radical en serie, ce qui est permis, puisque le second terme est plus

/ 559
Pages

Actions

file_download Download Options Download this page PDF - Pages 82-101 Image - Page 82 Plain Text - Page 82

About this Item

Title
Éléments de calcul infinitésimal, par m. Duhamel.
Author
Duhamel, M. (Jean Marie Constant), 1797-1872.
Canvas
Page 82
Publication
Paris,: Gauthier-Villars,
1874-76.
Subject terms
Calculus

Technical Details

Link to this Item
https://name.umdl.umich.edu/acq9129.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acq9129.0002.001/108

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acq9129.0002.001

Cite this Item

Full citation
"Éléments de calcul infinitésimal, par m. Duhamel." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acq9129.0002.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.