Théorie des résidus, par H. Laurent.
Annotations Tools
( 34 ) CHAPITRE III. DES INTGIGBALES DIFINIES PRISES ENTRE DES LIMITES IMAGINAIRES. Definitions. '16. C'est Cauchy qui le premier a donane une theorie coim plete et rigoureuse des integrales definies prises entre des limitcs imaginaires, dans un Memoire publie en 1825. Laplace et Ostrogradsky avaient avant lui fait quelques travaux sur cette question, mais, conmme le dit Cauchy dans sonl Memoire ((.,... Auecun des Memoires publies jusqu'a ce jour sur les diverses brancles du Calcul integral ne fixe le degre de generalite que comporte une integrale definie prise entre des limites imaginaires et le nombre des valeurs qu'elle peut admettre. )) Cauchy appelle integrale de la fonction f(z) prise depiis z0 jusqu'a Z et designe par le symbole 0z la liiite vers laquelle converge 'expression,f(z) (Zi,- zo) +f(Z) (2 -- )+ f(z2) (Z3 — Z)... qutand z,- zo, z, - z0..., Z -- z,,-_ convergenl vers o ct que 7 augmtente indefiniment. A la limite, les points zo0 z1, z2,...., etant infiniment rapprochds, se trouvveront sur
-
Scan #1
Page #1
-
Scan #2
Page #2
-
Scan #3
Page #3
-
Scan #4
Page #4 - Title Page
-
Scan #5
Page #5
-
Scan #6
Page #6 - Title Page
-
Scan #7
Page #7
-
Scan #8
Page V
-
Scan #9
Page VI
-
Scan #10
Page VII
-
Scan #11
Page VIII
-
Scan #12
Page 1
-
Scan #13
Page 2
-
Scan #14
Page 3
-
Scan #15
Page 4
-
Scan #16
Page 5
-
Scan #17
Page 6
-
Scan #18
Page 7
-
Scan #19
Page 8
-
Scan #20
Page 9
-
Scan #21
Page 10
-
Scan #22
Page 11
-
Scan #23
Page 12
-
Scan #24
Page 13
-
Scan #25
Page 14
-
Scan #26
Page 15
-
Scan #27
Page 16
-
Scan #28
Page 17
-
Scan #29
Page 18
-
Scan #30
Page 19
-
Scan #31
Page 20
-
Scan #32
Page 21
-
Scan #33
Page 22
-
Scan #34
Page 23
-
Scan #35
Page 24
-
Scan #36
Page 25
-
Scan #37
Page 26
-
Scan #38
Page 27
-
Scan #39
Page 28
-
Scan #40
Page 29
-
Scan #41
Page 30
-
Scan #42
Page 31
-
Scan #43
Page 32
-
Scan #44
Page 33
-
Scan #45
Page 34
-
Scan #46
Page 35
-
Scan #47
Page 36
-
Scan #48
Page 37
-
Scan #49
Page 38
-
Scan #50
Page 39
-
Scan #51
Page 40
-
Scan #52
Page 41
-
Scan #53
Page 42
-
Scan #54
Page 43
-
Scan #55
Page 44
-
Scan #56
Page 45
-
Scan #57
Page 46
-
Scan #58
Page 47
-
Scan #59
Page 48
-
Scan #60
Page 49
-
Scan #61
Page 50
-
Scan #62
Page 51
-
Scan #63
Page 52
-
Scan #64
Page 53
-
Scan #65
Page 54
-
Scan #66
Page 55
-
Scan #67
Page 56
-
Scan #68
Page 57
-
Scan #69
Page 58
-
Scan #70
Page 59
-
Scan #71
Page 60
-
Scan #72
Page 61
-
Scan #73
Page 62
-
Scan #74
Page 63
-
Scan #75
Page 64
-
Scan #76
Page 65
-
Scan #77
Page 66
-
Scan #78
Page 67
-
Scan #79
Page 68
-
Scan #80
Page 69
-
Scan #81
Page 70
-
Scan #82
Page 71
-
Scan #83
Page 72
-
Scan #84
Page 73
-
Scan #85
Page 74
-
Scan #86
Page 75
-
Scan #87
Page 76
-
Scan #88
Page 77
-
Scan #89
Page 78
-
Scan #90
Page 79
-
Scan #91
Page 80
-
Scan #92
Page 81
-
Scan #93
Page 82
-
Scan #94
Page 83
-
Scan #95
Page 84
-
Scan #96
Page 85
-
Scan #97
Page 86
-
Scan #98
Page 87
-
Scan #99
Page 88
-
Scan #100
Page 89
-
Scan #101
Page 90
-
Scan #102
Page 91
-
Scan #103
Page 92
-
Scan #104
Page 93
-
Scan #105
Page 94
-
Scan #106
Page 95
-
Scan #107
Page 96
-
Scan #108
Page 97
-
Scan #109
Page 98
-
Scan #110
Page 99
-
Scan #111
Page 100
-
Scan #112
Page 101
-
Scan #113
Page 102
-
Scan #114
Page 103
-
Scan #115
Page 104
-
Scan #116
Page 105
-
Scan #117
Page 106
-
Scan #118
Page 107
-
Scan #119
Page 108
-
Scan #120
Page 109
-
Scan #121
Page 110
-
Scan #122
Page 111
-
Scan #123
Page 112
-
Scan #124
Page 113
-
Scan #125
Page 114
-
Scan #126
Page 115
-
Scan #127
Page 116
-
Scan #128
Page 117
-
Scan #129
Page 118
-
Scan #130
Page 119
-
Scan #131
Page 120
-
Scan #132
Page 121
-
Scan #133
Page 122
-
Scan #134
Page 123
-
Scan #135
Page 124
-
Scan #136
Page 125
-
Scan #137
Page 126
-
Scan #138
Page 127
-
Scan #139
Page 128
-
Scan #140
Page 129
-
Scan #141
Page 130
-
Scan #142
Page 131
-
Scan #143
Page 132
-
Scan #144
Page 133
-
Scan #145
Page 134
-
Scan #146
Page 135
-
Scan #147
Page 136
-
Scan #148
Page 137
-
Scan #149
Page 138
-
Scan #150
Page 139
-
Scan #151
Page 140
-
Scan #152
Page 141
-
Scan #153
Page 142
-
Scan #154
Page 143
-
Scan #155
Page 144
-
Scan #156
Page 145
-
Scan #157
Page 146
-
Scan #158
Page 147
-
Scan #159
Page 148
-
Scan #160
Page 149
-
Scan #161
Page 150
-
Scan #162
Page 151
-
Scan #163
Page 152
-
Scan #164
Page 153
-
Scan #165
Page 154
-
Scan #166
Page 155
-
Scan #167
Page 156
-
Scan #168
Page 157
-
Scan #169
Page 158
-
Scan #170
Page 159
-
Scan #171
Page 160
-
Scan #172
Page 161
-
Scan #173
Page 162
-
Scan #174
Page 163
-
Scan #175
Page 164
-
Scan #176
Page 165
-
Scan #177
Page 166
-
Scan #178
Page 167
-
Scan #179
Page 168
-
Scan #180
Page 169
-
Scan #181
Page 170
-
Scan #182
Page 171
-
Scan #183
Page 172
-
Scan #184
Page 173
-
Scan #185
Page 174
-
Scan #186
Page 175 - Table of Contents
-
Scan #187
Page 176 - Table of Contents
-
Scan #188
Page #188
-
Scan #189
Page #189
Actions
About this Item
- Title
- Théorie des résidus, par H. Laurent.
- Author
- Laurent, H. (Hermann), 1841-1908.
- Canvas
- Page 30
- Publication
- Paris,: Gauthier-Villars
- 1865.
- Subject terms
- Functions
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acq7811.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acq7811.0001.001/45
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acq7811.0001.001
Cite this Item
- Full citation
-
"Théorie des résidus, par H. Laurent." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acq7811.0001.001. University of Michigan Library Digital Collections. Accessed May 4, 2025.