Théorie des résidus, par H. Laurent.

( 120 ) et differentiant une fois cette equation, -- x(I -- 2) '2Dy + (i - x.) D2y - o O0 xDy =(I - x2)D2y. Diff6rentions n fois les deux mernbres de cette derniere equation, il vient xDn+yt +n D"y =(I - 2) D"+y -2 nx Dn+ly — 2 - Dny; 1.2 en faisant x = O, on a nD"y = D"+y - n(n - ) Dny, ou enfin Drt"+y n2 D'"y. Faisant successivement n = i 2, 3,..., et observant que pour x o, Dy est egal a i et D2y etgal a o, on trouve D3y = i2, D5y -I2.3,.., D2"+ly - i. 32...(2n -I)2... D y — o,,..., D2"y o.... Or, la fonction arc sinx est synectique a l'interieur d'un cercle dont le rayon est i et le centre l'origine; on a done a l'interieur de ce cercle I X,3 1.3 x5 1. 3.5 x7 arc sinx =: x T + -- + - - 1.2 3 1.2.4 5 1.2.4.6 7 On trouverait de la neme mani6re et entre les memes limites de x i:t1.- \a i.3 x 1 i.3.5 x7 l(x~ V4:- ) x- -- 4- 4 — +. 1.2 3 1.2.4 5 2.4.6 7,2. I. 2: I,2. 2 4[ X (arc sin) - -x) -2 - -- - I 1.32 r.3.5 3 Proposons-nous maintenant de developper sinnix sui

/ 189
Pages

Actions

file_download Download Options Download this page PDF - Pages 110-129 Image - Page 110 Plain Text - Page 110

About this Item

Title
Théorie des résidus, par H. Laurent.
Author
Laurent, H. (Hermann), 1841-1908.
Canvas
Page 110
Publication
Paris,: Gauthier-Villars
1865.
Subject terms
Functions

Technical Details

Link to this Item
https://name.umdl.umich.edu/acq7811.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acq7811.0001.001/131

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acq7811.0001.001

Cite this Item

Full citation
"Théorie des résidus, par H. Laurent." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acq7811.0001.001. University of Michigan Library Digital Collections. Accessed May 4, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.