The theory of determinants in the historical order of development, by Sir Thomas Muir.

42 HISTORY'OF THE THEORY OF DETERMINANTS correspondant 'a une permutation quelconque de ces nombres, la fonction, ~(l 2. n) (oti I de'signe la somme de tons les termes qu'on obtient en permutant ces nombres d'une manie're quelconque) est ce qu'on nomme DMerrninant." It is readily seen that this is much more genera] than any definition in use up to that time, and that it agrees with the ordinary definition only when the f unction (1 2... n) takes the particular form X. P - X.,, or XI.X2... X,,. Further, it is not the same generalisation as we are familiar with from Cauchy's great mremoir of 1812, where determinants are viewed as a special class of alternatirtg symmbetric functions. This is shown quite clearly by the only other case brought forward by Cayley, viz., the case where the f unction (1 2... 'a) is given the form X12.34 Other examples, not given by Cayley, are~4 a3 i.e.2 a123 -a132 - a213 ~a 9L31 + a312-a.21' 1~~2 *q** a12 - 13 -a23 a3.2 a23 a23 a32 a 13 a 31 a12 a21 There is also in the same paper a more direct contribution to the theory of general determinants, viz., the theorem afterwards 'associated with Cayley's -name, and which,-to use later phraseology,-gives the expression for a determinant in terms of its own devertebrated coaxial mninors and its primary diagonal elemenuts. In the actual wording of the description of the theorem it is, not unnaturally, applied to a skew determinant only; but there is clearly nothing in the nature of the case to confine it to this special form. The description is"En effet, soit S2 le dtterminant gauche dont il s'agit, cette fonction pent eftre presentee sons la forme 2 = 20 + S2 1X\ + 22A22 ~. + 21?A11X22 +. oS2~ est ce que devient 2 si Al, 'Xn re'dnits 'a zero 2 est 011 0 ~ ~ ~ ~ 1'22'.sn ce que devient le eo~3fflicient de A,, sous la me'me condition, et ainsi de suite; c'est 'a-dire: 2~ est le determinant f orme6 par les quantite's A,, en snpposant que ces quantite's satisfassent anx condition (2), et en donnant At r les valeurs 1, 2, n. 21 est le determinant forme' pareillement en donnaut 'a r, s les valeurs 2, 3,...,n91; 22 s'obtient eni donnant A r,) s les valeurs 1, 3,..., m1, et ainsi de suite: cela est aise' de voir si l'on range les quantite's i,., en forme de carre'"

/ 497
Pages

Actions

file_download Download Options Download this page PDF - Pages 42-61 Image - Page 42 Plain Text - Page 42

About this Item

Title
The theory of determinants in the historical order of development, by Sir Thomas Muir.
Author
Muir, Thomas, Sir, 1844-1934.
Canvas
Page 42
Publication
London,: Macmillan and Co., Limited,
1906-
Subject terms
Determinants

Technical Details

Link to this Item
https://name.umdl.umich.edu/acm9350.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acm9350.0002.001/61

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acm9350.0002.001

Cite this Item

Full citation
"The theory of determinants in the historical order of development, by Sir Thomas Muir." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acm9350.0002.001. University of Michigan Library Digital Collections. Accessed June 25, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.