The theory of determinants in the historical order of development, by Sir Thomas Muir.

256 HISTORY OF' THE THEORY OF DETERMINANTS s'obtient en donnant 'a r, s les valeurs 1, 3,..., n; et ainsi de suite; cela est aise' de voir si l'on range les quantite's kr, en forme de earr6." At this point a 'digression is made in order to establish a theorem regarding skew determinants of odd order, and another' regarding skew determinants of even order, and thus be enabled to make certain snbstitutions for the Q's in the development here annonnced. Further, as the said substitutions for the Q2's of even order involve the functions dealt with by Jacobi in his paper on the " Pfaffsche Methode,"-functions which Cayley here calls " les fonctions de M. Jacobi," but which at a later date he designated " Pfatfflans,"-the digression is lengthened by having prefixed to it an account of these functions. So curious is this account and so likely to be misrepresented by condensation, that the best way of treating it is to reproduce it in the original words.* It stands thns: " On obtient ces fonctions (dont je reprends ici la the'orie) par les proprikt's ge'n~rales d'un determinant de'fini. Car en exprimant par (1, 2,..., n) une fonction quelconque dans laquelle entrent les nombres symboliques 1, 2,...,n, et par ~ le signe correspondant n ne permutation quelconque de ces nombres, la fonction oil de'signe la somme de tons les termes quont obtient en permutant cees nombres d'une manietre quelconque est cc qu'on nomme Ddlerminanl. On pourrait encore ge'neraliser cette diefinition en admettant plusicurs syste'mes de nombres 1, 2.-.., n; 1', 2'..., n';... qui alors devroient eftre permute's independamment les uns des autres; on obtiendrait de cette maniebre une infinit6' d'autres fonctions, mentionne'es (T. xxx. p. 7). Dans le cas des ddtermiuants ordinaires, auquel j e ne m'arr~terai pas ici, on anra (1, 2... n) = AajXo,2... X,11 Pour les cas des fonctions dont il s'agit (les fonctions de M. Jacobi), on supposera n pair, et l'on ~erira (1 2...n)= xi, X3,4.. n oii Xr, sont des quantite's quelconques qui satisfont aux 'quations (1). La fonction sera compose'e d'un nombre 1. 2... n de termes; mais parmi eux il n'y aura que 1. 3...(nz - 1) termes diff~rents qui se trouveront re'pete's 2 2" (1I. 2.. n) fois, et qu'on obtiendra en permutant cycliquement d'abord les n -— l1 derniers nombres, puis les I The paper, as it appears in Crelle's Journal, is disfigured by misprints, which lhave not been fully corrected in the Collected Afath. Papers.

/ 497
Pages

Actions

file_download Download Options Download this page PDF - Pages 242-261 Image - Page 242 Plain Text - Page 242

About this Item

Title
The theory of determinants in the historical order of development, by Sir Thomas Muir.
Author
Muir, Thomas, Sir, 1844-1934.
Canvas
Page 242
Publication
London,: Macmillan and Co., Limited,
1906-
Subject terms
Determinants

Technical Details

Link to this Item
https://name.umdl.umich.edu/acm9350.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acm9350.0002.001/275

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acm9350.0002.001

Cite this Item

Full citation
"The theory of determinants in the historical order of development, by Sir Thomas Muir." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acm9350.0002.001. University of Michigan Library Digital Collections. Accessed June 24, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.