Theory and applications of finite groups, by G.A. Miller, H. F. Blichfeldt [and] L. E. Dickson.

TABLE OF CONTENTS xvil CHAPTER XVIII THE INFLEXION POINTS OF A PLANE CUBIC CURVE SECTION PAGE 173. Homogeneous coordinates, Euler's theorem, singular points........... 327 174. Hessian curve.......................................... 329 175. Inflexion points, inflexion triangles................................. 330 176-8. Group of the equation for the inflexion points..................... 333 179. Real points of inflexion.......................................... 341 CHAPTER XIX THE 27 STRAIGHT LINES ON A GENERAL CUBIC SURFACE AND THE 28 BITANGENTS TO A GENERAL QUARTIC CURVE 180. Existence of the 27 lines on a cubic surface.......................... 343 181. Double-six configuration.......................................... 345 182. The 45 triangles on a cubic surface................................. 346 183. Group Of the equation for the 27 lines.............................. 347 184. Relation between cubic surfaces and quartic curves.................. 351 Exercises.................................................. 353 185. Steiner sets of bitangents to a quartic curve......................... 354 186. Notation of Hesse and Cayley for the bitangents..................... 357 187. Group containing the group for the 28 bitangents................... 362 188. Number of real bitangents to a quartic curve........................ 365 189. Number of real lines on a cubic surface............................. 366 190. Actual determination of the group for the bitangents................. 367 191. Symmetrical notation for the bitangents............................ 372 192. Further problems of contacts of curves............................. 375 CHAPTER XX MONODROMIE GROUP 193. Monodromie group M of F(z, k)=0................................ 378 194. M an invariant subgroup of the Galois group of F................... 378 195. Applications of monodromie, differential equations..................... 379 196. Quintic equations, form problem................................... 381

/ 413
Pages

Actions

file_download Download Options Download this page PDF - Pages #1-20 Image - Page XVII Plain Text - Page XVII

About this Item

Title
Theory and applications of finite groups, by G.A. Miller, H. F. Blichfeldt [and] L. E. Dickson.
Author
Miller, G. A. (George Abram), 1863-1951.
Canvas
Page XVII - Table of Contents
Publication
New York,: John Wiley & sons, inc.; [etc., etc.]
1916.
Subject terms
Group theory.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acm6867.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acm6867.0001.001/20

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acm6867.0001.001

Cite this Item

Full citation
"Theory and applications of finite groups, by G.A. Miller, H. F. Blichfeldt [and] L. E. Dickson." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acm6867.0001.001. University of Michigan Library Digital Collections. Accessed June 19, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.