Vorlesungen über Variationsrechnung, von Dr. Oskar Bolza. Umgearb. und stark verm. deutsche Ausgabe der "Lectures on the calculus of variations" desselben Verfassers. Mit 117 Figuren im Text.

~ 76. Die zweite Variation. 627 verstehen wir die Determinante V (ul, 2,2* * * n) - I, i, I -= k, 2, *. *, n. Ein solches konjugiertes System bilden z. B. die n ersten Lösungen des kanonischen Fundamentalsystems (51): as)%, a.O. ä2, a m (57) Cac C-1,2, kn. 5Ck Denn bildet man die Gleichung (56) für irgend zwei Lösungen dieses Systems und berechnet den Wert der Konstanten aus dem speziellen Wert x = a, so folgt f (-Cj 2 aCj,5 -c-, 7c) = ü, (58) da nach Gleichung (143) von ~ 72 oa _ 0; (59) damit ist zugleich die Existenz von konjugierten Systemen bewiesen. Durch Vergleich') mit (21) erhält man zugleich den Satz: Die MIayer'sche Determinante A(x, a) ist zugleich die Determinante eines konjugierten Systems, nämlich des dem Punkt a zugeordneten kanonischen konjugierten Systems (57). In derselben Weise findet man unter Benutzung von Gleichung (143a) von ~ 72 ^ O (60) lp bV <vbj 2 b j c,) k (60) wo jk wieder das Kronecker'sche Symbol ist. Von besonderer Wichtigkeit ist für uns der folgende Satz von v. ESCHERICH2): Zu jedem Punkt x = a im Innern des Regularitätsintervalls: xT < x < x2 der Extremalen (o läßt sich ein konjugiertes System z1 rl;2 2;.;Znn konstruieren, dessen Determinante V ( 2,..., n) = I |Z |i, 2 =, 2,.. 2,,n im Punkt x = a von Null verschieden ist. Zum Beweis gehen wir von dem dem Punkt a zugeordneten kanonischen Fundamentalsystem (51) aus, das wir schreiben u,1 Q1; u2, g2;...; tZ, Qn; Un+ 1 gn++.;..; unn 2n. 1) Statt des speziellen Punktes x =x, haben wir hier einen beliebigen Punkt x = a der Extremalen e0. 2) Wiener Berichte, Bd. CVIII, p. 1339.

/ 736
Pages

Actions

file_download Download Options Download this page PDF - Pages 627-646 Image - Page 627 Plain Text - Page 627

About this Item

Title
Vorlesungen über Variationsrechnung, von Dr. Oskar Bolza. Umgearb. und stark verm. deutsche Ausgabe der "Lectures on the calculus of variations" desselben Verfassers. Mit 117 Figuren im Text.
Author
Bolza, O. (Oskar), 1857-1942.
Canvas
Page 627
Publication
Leipzig,: B. G. Teubner.
1909.
Subject terms
Calculus of variations

Technical Details

Link to this Item
https://name.umdl.umich.edu/acm2517.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acm2517.0001.001/641

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acm2517.0001.001

Cite this Item

Full citation
"Vorlesungen über Variationsrechnung, von Dr. Oskar Bolza. Umgearb. und stark verm. deutsche Ausgabe der "Lectures on the calculus of variations" desselben Verfassers. Mit 117 Figuren im Text." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acm2517.0001.001. University of Michigan Library Digital Collections. Accessed June 16, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.