An introduction to the study of the elements of the differential and integral calculus. From the German of the late Axel Harnack, With the permission of the author.

First Book. Real numbers and functions of real numbers. The conceptions of space and of number are the subject matter of mathematical investigations. These investigations accordingly diverge into two main branches: Geometry and Analysis. It thus appears that Mathematics are of fundamental importance to all our knowledge of Nature: for our representations of space contain the simplest properties which are common to all things in the surrounding world; and accurate comparison or measurement of quantities leads always to concrete numbers of the units employed: in order to understand the result, we require a knowledge of numbers and of their combinations. Nature in its phenomena is perpetually exhibiting change; the simplest changes we perceive externally are changes of place, motions. The representation of motion is necessarily combined with that of continuity, i. e. of an uninterrupted connexion in space and of an uninterrupted sequence in time. To describe thoroughly the phenomena of motion is to assign every circumstance in numbers of concrete units: so that if the series of numbers is also to enable us to describe motion, it must contain a continuous series of quantities. Thus the first problem of Analysis is: to develope the conception and the properties of the continuous series of numbers. First Chapter. Rational numbers. 1. The natural series of numbers, which arises by adding on a thing to others in counting, advances always by unity; each number is defined by the preceding number and by unity. This series of integers starting from unity can be continued on indefinitely. Now as each several number is a sum of repeatedly added units, such a sum of units can be composed of different given numbers. This arithmetical operation, merely a continuted reckoning up of groups of units, is called Addition; it embraces all other operations, from it all others arise. The fundamental proposition for addition is: the sum of given numbers HA RNA.CK, Calculus. 1

/ 415
Pages

Actions

file_download Download Options Download this page PDF - Pages #1-20 Image - Page 1 Plain Text - Page 1

About this Item

Title
An introduction to the study of the elements of the differential and integral calculus. From the German of the late Axel Harnack, With the permission of the author.
Author
Harnack, Axel, 1851-1888.
Canvas
Page 1
Publication
London [etc]: Williams and Norgate,
1891.
Subject terms
Calculus
Functions

Technical Details

Link to this Item
https://name.umdl.umich.edu/acm2071.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acm2071.0001.001/12

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acm2071.0001.001

Cite this Item

Full citation
"An introduction to the study of the elements of the differential and integral calculus. From the German of the late Axel Harnack, With the permission of the author." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acm2071.0001.001. University of Michigan Library Digital Collections. Accessed June 17, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.