An introduction to the study of the elements of the differential and integral calculus. From the German of the late Axel Harnack, With the permission of the author.

~ 63-65. Real and imaginary differ in conception not in application. 111l 64. The contrasted epithets "real" and "imaginary" favor the erroneous impression, which indeed has impeded the systematic introduction of imaginary numbers into analysis, that numbers of the first kind possess a practical reality which those of the second have not. Considering the arithmetical operations merely, without application to physical quantities, fractions, irrational numbers, imaginaries, all form legitimate extensions of the conception of number, that are connected with the integer by determinate arithmetical operations. In the applications of these operations on the other hand everything depends on the kind of numbers introduced at the outset in framing a problem analytically. If ex. gr. in the case of discrete quantities, from the way in which the problem is proposed only integers are admissible, the proposed problem is seen to be impossible when the result is a fraction. Likewise in the result of a calculation referring to physical quantities, a negative number will have a meaning applicable to these quantities, only when from the first the quantities were distinguished in the sense of positive and negative. In analogy with this, even when the result of calculation is imaginary, its meaning is no longer unreal, when the actual quantities considered, are characterised not only by real, but also by imaginary numbers. The simplest example of a representation of intuitive quantities by imaginary numbers is the geometric interpretation, which we shall deal with as we go on. "As mathematical science strives towards doing away with exceptions to rules and towards contemplating different propositions from one point of view, it is often compelled to enlarge its conceptions or to establish new ones, and this nearly always denotes a progress in the science. A great example of this is the introduction of imaginary quantities into analysis." (v. Staudt, Beitrige zur Geometrie der Lage. Heft I. Vorwort.) 65. It follows from the definition of the imaginary unit that: 2 i. i = (/- 1)2 1. Accordingly we understand by: i- = i = -- i. i -- (i2) 1. Hence follows by inversion: 1-. 1 1 - i 7 i2? i3 7 4 -2ti) 7 e 4 that a real solution could be expressed only by means of square roots of negative quantities (Bombelli 1579). Since that time imaginary numbers have never disappeared from analysis. The earliest who found their employment fruitful was Euler. But it was the works of Gauss (1777-1855) and of Cauchy which first manifested the importance of the complex number as a generalised conception of number.

/ 415
Pages

Actions

file_download Download Options Download this page PDF - Pages 90-111 Image - Page 90 Plain Text - Page 90

About this Item

Title
An introduction to the study of the elements of the differential and integral calculus. From the German of the late Axel Harnack, With the permission of the author.
Author
Harnack, Axel, 1851-1888.
Canvas
Page 90
Publication
London [etc]: Williams and Norgate,
1891.
Subject terms
Calculus
Functions

Technical Details

Link to this Item
https://name.umdl.umich.edu/acm2071.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acm2071.0001.001/120

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acm2071.0001.001

Cite this Item

Full citation
"An introduction to the study of the elements of the differential and integral calculus. From the German of the late Axel Harnack, With the permission of the author." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acm2071.0001.001. University of Michigan Library Digital Collections. Accessed May 16, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.