A course of pure mathematics, by G.H. Hardy.
Annotations Tools
102-105] DERIVATIVES AND INTEGRALS 207 That this condition is not sufficient is evident from a glance at the point C in the figure. Thus if y =x, b)'(x)=3x2, which vanishes when x = 0. But x = 0 does not give either a maximum or a minimum of x3, as is obvious from the form of the graph of x3 (~ 13, Fig. 11). But there will certainly be a maximum for x= 4 if /' (4:)= 0, ' (x) > 0 for all values of x less than but near to x, and ' (x) < 0 for all values of x greater than but near to x: and if the signs of these two inequalities are reversed there will certainly be a minimum. For then we can determine an interval (I-8, 4) throughout which b (x) increases with x, and an interval (I, + 8) throughout which it decreases as x increases: and obviously this ensures that 0b(4) shall be a maximum. This result may also be stated thus-if the sign of b'(x) changes at x from positive to negative, then x = gives a maximum of ((x): and if the sign of q'(x) changes in the opposite sense, then x = gives a minimum. 104. There is another way of stating the conditions for a maximum or minimum which is often useful. Let us assume that +(x) has a second derivative +"(x): this of course does not follow from the existence of +'(x), any more than the existence of +'(x) follows from that of (x). But in such cases as we are likely to meet with at present the condition is generally satisfied. THEOREM D. If 0'(f) = 0 and ' (I) =j 0, (b(x) has a maximum or minimum for x=: a maximum if +b"(t) < 0, a mi imum if qi (4) >o. Suppose, e.g., +"(:) < 0. Then +'(x) is decreasing near x= I:, and so its sign changes from positive to negative. Thus x= gives a maximum. 105. In what has preceded (apart from the last paragraph) we have assumed simply that (x) has a derivative for all values of x in the interval under consideration. If this condition is not fulfilled the theorems cease to be true. Thus Theorem B fails in the case of the function y=l - /(X2), where the square root is to be taken positive. The graph of this function is shown in Fig. 48. Here /(- 1)=((1)=0: but 0'(x) (as is evident from the figure) is equal to + 1 if x is negative and to -1 if x is positive, and never
-
Scan #1
Page #1
-
Scan #2
Page #2
-
Scan #3
Page #3
-
Scan #4
Page #4
-
Scan #5
Page #5
-
Scan #6
Page #6
-
Scan #7
Page #7
-
Scan #8
Page V
-
Scan #9
Page VI
-
Scan #10
Page VII
-
Scan #11
Page VIII
-
Scan #12
Page IX
-
Scan #13
Page X
-
Scan #14
Page XI - Table of Contents
-
Scan #15
Page XII - Table of Contents
-
Scan #16
Page XIII - Table of Contents
-
Scan #17
Page XIV - Table of Contents
-
Scan #18
Page XV - Table of Contents
-
Scan #19
Page #19
-
Scan #20
Page 1
-
Scan #21
Page 2
-
Scan #22
Page 3
-
Scan #23
Page 4
-
Scan #24
Page 5
-
Scan #25
Page 6
-
Scan #26
Page 7
-
Scan #27
Page 8
-
Scan #28
Page 9
-
Scan #29
Page 10
-
Scan #30
Page 11
-
Scan #31
Page 12
-
Scan #32
Page 13
-
Scan #33
Page 14
-
Scan #34
Page 15
-
Scan #35
Page 16
-
Scan #36
Page 17
-
Scan #37
Page 18
-
Scan #38
Page 19
-
Scan #39
Page 20
-
Scan #40
Page 21
-
Scan #41
Page 22
-
Scan #42
Page 23
-
Scan #43
Page 24
-
Scan #44
Page 25
-
Scan #45
Page 26
-
Scan #46
Page 27
-
Scan #47
Page 28
-
Scan #48
Page 29
-
Scan #49
Page 30
-
Scan #50
Page 31
-
Scan #51
Page 32
-
Scan #52
Page 33
-
Scan #53
Page 34
-
Scan #54
Page 35
-
Scan #55
Page 36
-
Scan #56
Page 37
-
Scan #57
Page 38
-
Scan #58
Page 39
-
Scan #59
Page 40
-
Scan #60
Page 41
-
Scan #61
Page 42
-
Scan #62
Page 43
-
Scan #63
Page 44
-
Scan #64
Page 45
-
Scan #65
Page 46
-
Scan #66
Page 47
-
Scan #67
Page 48
-
Scan #68
Page 49
-
Scan #69
Page 50
-
Scan #70
Page 51
-
Scan #71
Page 52
-
Scan #72
Page 53
-
Scan #73
Page 54
-
Scan #74
Page 55
-
Scan #75
Page 56
-
Scan #76
Page 57
-
Scan #77
Page 58
-
Scan #78
Page 59
-
Scan #79
Page 60
-
Scan #80
Page 61
-
Scan #81
Page 62
-
Scan #82
Page 63
-
Scan #83
Page 64
-
Scan #84
Page 65
-
Scan #85
Page 66
-
Scan #86
Page 67
-
Scan #87
Page 68
-
Scan #88
Page 69
-
Scan #89
Page 70
-
Scan #90
Page 71
-
Scan #91
Page 72
-
Scan #92
Page 73
-
Scan #93
Page 74
-
Scan #94
Page 75
-
Scan #95
Page 76
-
Scan #96
Page 77
-
Scan #97
Page 78
-
Scan #98
Page 79
-
Scan #99
Page 80
-
Scan #100
Page 81
-
Scan #101
Page 82
-
Scan #102
Page 83
-
Scan #103
Page 84
-
Scan #104
Page 85
-
Scan #105
Page 86
-
Scan #106
Page 87
-
Scan #107
Page 88
-
Scan #108
Page 89
-
Scan #109
Page 90
-
Scan #110
Page 91
-
Scan #111
Page 92
-
Scan #112
Page 93
-
Scan #113
Page 94
-
Scan #114
Page 95
-
Scan #115
Page 96
-
Scan #116
Page 97
-
Scan #117
Page 98
-
Scan #118
Page 99
-
Scan #119
Page 100
-
Scan #120
Page 101
-
Scan #121
Page 102
-
Scan #122
Page 103
-
Scan #123
Page 104
-
Scan #124
Page 105
-
Scan #125
Page 106
-
Scan #126
Page 107
-
Scan #127
Page 108
-
Scan #128
Page 109
-
Scan #129
Page 110
-
Scan #130
Page 111
-
Scan #131
Page 112
-
Scan #132
Page 113
-
Scan #133
Page 114
-
Scan #134
Page 115
-
Scan #135
Page 116
-
Scan #136
Page 117
-
Scan #137
Page 118
-
Scan #138
Page 119
-
Scan #139
Page 120
-
Scan #140
Page 121
-
Scan #141
Page 122
-
Scan #142
Page 123
-
Scan #143
Page 124
-
Scan #144
Page 125
-
Scan #145
Page 126
-
Scan #146
Page 127
-
Scan #147
Page 128
-
Scan #148
Page 129
-
Scan #149
Page 130
-
Scan #150
Page 131
-
Scan #151
Page 132
-
Scan #152
Page 133
-
Scan #153
Page 134
-
Scan #154
Page 135
-
Scan #155
Page 136
-
Scan #156
Page 137
-
Scan #157
Page 138
-
Scan #158
Page 139
-
Scan #159
Page 140
-
Scan #160
Page 141
-
Scan #161
Page 142
-
Scan #162
Page 143
-
Scan #163
Page 144
-
Scan #164
Page 145
-
Scan #165
Page 146
-
Scan #166
Page 147
-
Scan #167
Page 148
-
Scan #168
Page 149
-
Scan #169
Page 150
-
Scan #170
Page 151
-
Scan #171
Page 152
-
Scan #172
Page 153
-
Scan #173
Page 154
-
Scan #174
Page 155
-
Scan #175
Page 156
-
Scan #176
Page 157
-
Scan #177
Page 158
-
Scan #178
Page 159
-
Scan #179
Page 160
-
Scan #180
Page 161
-
Scan #181
Page 162
-
Scan #182
Page 163
-
Scan #183
Page 164
-
Scan #184
Page 165
-
Scan #185
Page 166
-
Scan #186
Page 167
-
Scan #187
Page 168
-
Scan #188
Page 169
-
Scan #189
Page 170
-
Scan #190
Page 171
-
Scan #191
Page 172
-
Scan #192
Page 173
-
Scan #193
Page 174
-
Scan #194
Page 175
-
Scan #195
Page 176
-
Scan #196
Page 177
-
Scan #197
Page 178
-
Scan #198
Page 179
-
Scan #199
Page 180
-
Scan #200
Page 181
-
Scan #201
Page 182
-
Scan #202
Page 183
-
Scan #203
Page 184
-
Scan #204
Page 185
-
Scan #205
Page 186
-
Scan #206
Page 187
-
Scan #207
Page 188
-
Scan #208
Page 189
-
Scan #209
Page 190
-
Scan #210
Page 191
-
Scan #211
Page 192
-
Scan #212
Page 193
-
Scan #213
Page 194
-
Scan #214
Page 195
-
Scan #215
Page 196
-
Scan #216
Page 197
-
Scan #217
Page 198
-
Scan #218
Page 199
-
Scan #219
Page 200
-
Scan #220
Page 201
-
Scan #221
Page 202
-
Scan #222
Page 203
-
Scan #223
Page 204
-
Scan #224
Page 205
-
Scan #225
Page 206
-
Scan #226
Page 207
-
Scan #227
Page 208
-
Scan #228
Page 209
-
Scan #229
Page 210
-
Scan #230
Page 211
-
Scan #231
Page 212
-
Scan #232
Page 213
-
Scan #233
Page 214
-
Scan #234
Page 215
-
Scan #235
Page 216
-
Scan #236
Page 217
-
Scan #237
Page 218
-
Scan #238
Page 219
-
Scan #239
Page 220
-
Scan #240
Page 221
-
Scan #241
Page 222
-
Scan #242
Page 223
-
Scan #243
Page 224
-
Scan #244
Page 225
-
Scan #245
Page 226
-
Scan #246
Page 227
-
Scan #247
Page 228
-
Scan #248
Page 229
-
Scan #249
Page 230
-
Scan #250
Page 231
-
Scan #251
Page 232
-
Scan #252
Page 233
-
Scan #253
Page 234
-
Scan #254
Page 235
-
Scan #255
Page 236
-
Scan #256
Page 237
-
Scan #257
Page 238
-
Scan #258
Page 239
-
Scan #259
Page 240
-
Scan #260
Page 241
-
Scan #261
Page 242
-
Scan #262
Page 243
-
Scan #263
Page 244
-
Scan #264
Page 245
-
Scan #265
Page 246
-
Scan #266
Page 247
-
Scan #267
Page 248
-
Scan #268
Page 249
-
Scan #269
Page 250
-
Scan #270
Page 251
-
Scan #271
Page 252
-
Scan #272
Page 253
-
Scan #273
Page 254
-
Scan #274
Page 255
-
Scan #275
Page 256
-
Scan #276
Page 257
-
Scan #277
Page 258
-
Scan #278
Page 259
-
Scan #279
Page 260
-
Scan #280
Page 261
-
Scan #281
Page 262
-
Scan #282
Page 263
-
Scan #283
Page 264
-
Scan #284
Page 265
-
Scan #285
Page 266
-
Scan #286
Page 267
-
Scan #287
Page 268
-
Scan #288
Page 269
-
Scan #289
Page 270
-
Scan #290
Page 271
-
Scan #291
Page 272
-
Scan #292
Page 273
-
Scan #293
Page 274
-
Scan #294
Page 275
-
Scan #295
Page 276
-
Scan #296
Page 277
-
Scan #297
Page 278
-
Scan #298
Page 279
-
Scan #299
Page 280
-
Scan #300
Page 281
-
Scan #301
Page 282
-
Scan #302
Page 283
-
Scan #303
Page 284
-
Scan #304
Page 285
-
Scan #305
Page 286
-
Scan #306
Page 287
-
Scan #307
Page 288
-
Scan #308
Page 289
-
Scan #309
Page 290
-
Scan #310
Page 291
-
Scan #311
Page 292
-
Scan #312
Page 293
-
Scan #313
Page 294
-
Scan #314
Page 295
-
Scan #315
Page 296
-
Scan #316
Page 297
-
Scan #317
Page 298
-
Scan #318
Page 299
-
Scan #319
Page 300
-
Scan #320
Page 301
-
Scan #321
Page 302
-
Scan #322
Page 303
-
Scan #323
Page 304
-
Scan #324
Page 305
-
Scan #325
Page 306
-
Scan #326
Page 307
-
Scan #327
Page 308
-
Scan #328
Page 309
-
Scan #329
Page 310
-
Scan #330
Page 311
-
Scan #331
Page 312
-
Scan #332
Page 313
-
Scan #333
Page 314
-
Scan #334
Page 315
-
Scan #335
Page 316
-
Scan #336
Page 317
-
Scan #337
Page 318
-
Scan #338
Page 319
-
Scan #339
Page 320
-
Scan #340
Page 321
-
Scan #341
Page 322
-
Scan #342
Page 323
-
Scan #343
Page 324
-
Scan #344
Page 325
-
Scan #345
Page 326
-
Scan #346
Page 327
-
Scan #347
Page 328
-
Scan #348
Page 329
-
Scan #349
Page 330
-
Scan #350
Page 331
-
Scan #351
Page 332
-
Scan #352
Page 333
-
Scan #353
Page 334
-
Scan #354
Page 335
-
Scan #355
Page 336
-
Scan #356
Page 337
-
Scan #357
Page 338
-
Scan #358
Page 339
-
Scan #359
Page 340
-
Scan #360
Page 341
-
Scan #361
Page 342
-
Scan #362
Page 343
-
Scan #363
Page 344
-
Scan #364
Page 345
-
Scan #365
Page 346
-
Scan #366
Page 347
-
Scan #367
Page 348
-
Scan #368
Page 349
-
Scan #369
Page 350
-
Scan #370
Page 351
-
Scan #371
Page 352
-
Scan #372
Page 353
-
Scan #373
Page 354
-
Scan #374
Page 355
-
Scan #375
Page 356
-
Scan #376
Page 357
-
Scan #377
Page 358
-
Scan #378
Page 359
-
Scan #379
Page 360
-
Scan #380
Page 361
-
Scan #381
Page 362
-
Scan #382
Page 363
-
Scan #383
Page 364
-
Scan #384
Page 365
-
Scan #385
Page 366
-
Scan #386
Page 367
-
Scan #387
Page 368
-
Scan #388
Page 369
-
Scan #389
Page 370
-
Scan #390
Page 371
-
Scan #391
Page 372
-
Scan #392
Page 373
-
Scan #393
Page 374
-
Scan #394
Page 375
-
Scan #395
Page 376
-
Scan #396
Page 377
-
Scan #397
Page 378
-
Scan #398
Page 379
-
Scan #399
Page 380
-
Scan #400
Page 381
-
Scan #401
Page 382
-
Scan #402
Page 383
-
Scan #403
Page 384
-
Scan #404
Page 385
-
Scan #405
Page 386
-
Scan #406
Page 387
-
Scan #407
Page 388
-
Scan #408
Page 389
-
Scan #409
Page 390
-
Scan #410
Page 391
-
Scan #411
Page 392
-
Scan #412
Page 393
-
Scan #413
Page 394
-
Scan #414
Page 395
-
Scan #415
Page 396
-
Scan #416
Page 397
-
Scan #417
Page 398
-
Scan #418
Page 399
-
Scan #419
Page 400
-
Scan #420
Page 401
-
Scan #421
Page 402
-
Scan #422
Page 403
-
Scan #423
Page 404
-
Scan #424
Page 405
-
Scan #425
Page 406
-
Scan #426
Page 407
-
Scan #427
Page 408
-
Scan #428
Page 409
-
Scan #429
Page 410
-
Scan #430
Page 411
-
Scan #431
Page 412
-
Scan #432
Page 413
-
Scan #433
Page 414
-
Scan #434
Page 415
-
Scan #435
Page 416
-
Scan #436
Page 417
-
Scan #437
Page 418
-
Scan #438
Page 419
-
Scan #439
Page 420
-
Scan #440
Page 421
-
Scan #441
Page 422
-
Scan #442
Page 423 - Comprehensive Index
-
Scan #443
Page 424 - Comprehensive Index
-
Scan #444
Page 425 - Comprehensive Index
-
Scan #445
Page 426 - Comprehensive Index
-
Scan #446
Page 427 - Comprehensive Index
-
Scan #447
Page 428 - Comprehensive Index
-
Scan #448
Page #448
-
Scan #449
Page #449
Actions
About this Item
- Title
- A course of pure mathematics, by G.H. Hardy.
- Author
- Hardy, G. H. (Godfrey Harold), 1877-1947.
- Canvas
- Page 202
- Publication
- Cambridge,: The University Press,
- 1908.
- Subject terms
- Calculus
- Functions
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acm1516.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acm1516.0001.001/226
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acm1516.0001.001
Cite this Item
- Full citation
-
"A course of pure mathematics, by G.H. Hardy." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acm1516.0001.001. University of Michigan Library Digital Collections. Accessed April 27, 2025.