An introduction to the summation of differences of a function; an elementary exposition of the nature of the algebraic processes replaced by the abbreviations of the infinitesimal calculus, by B. F. Groat.
Annotations Tools
CHAPTER VII ELIMINANTS AND DISCRIMINANTS 47. Elimination. To eliminate the two quantities x, y, from the three equations ai x+bi y+ci = o, (I) a2 x+b yc2 = C o, (2) a3 x-b3 y+C3. (3) Multiply (I), (2), (3), in order by C1, C2, C3, and add The a1 bl c1 sum is cl Cl+c2 C2+c8 C3 = a2 b2 C2 = o. as7 b3 C3 This expresses the condition that the three equations are simultaneous in x, y; that is consistent, or capable of being satisfied by the same set of values of x, j. Similarly thefour equations <a x+bly-+-cl z+d =- o, a2 x+b2 y+c2 z+d2= o, a4 x+b4y+c4 z-Kd4 - o, between the three quantities x, y, z, are consistent if al b\ ci di a2 b2 C2 d2,3 ba C3 d3 n4 b4 C4 d4 In general n-I quantities involved in a system of ti simultaneous equations may be eliminated by arranging the terms of each equation in corresponding order in one member and equating to zero the determinant of the array so formed by the coefficients. This determinant may be called the eliminant
-
Scan #1
Page #1
-
Scan #2
Page #2
-
Scan #3
Page #3
-
Scan #4
Page #4
-
Scan #5
Page #5
-
Scan #6
Page #6
-
Scan #7
Page #7
-
Scan #8
Page 1
-
Scan #9
Page 2
-
Scan #10
Page 3
-
Scan #11
Page 4
-
Scan #12
Page 5
-
Scan #13
Page 6
-
Scan #14
Page 7
-
Scan #15
Page 8
-
Scan #16
Page 9
-
Scan #17
Page 10
-
Scan #18
Page 11
-
Scan #19
Page 12
-
Scan #20
Page 13
-
Scan #21
Page 14
-
Scan #22
Page 15
-
Scan #23
Page 16
-
Scan #24
Page 17
-
Scan #25
Page 18
-
Scan #26
Page 19
-
Scan #27
Page 20
-
Scan #28
Page 21
-
Scan #29
Page 22
-
Scan #30
Page 23
-
Scan #31
Page 24
-
Scan #32
Page 25
-
Scan #33
Page 26
-
Scan #34
Page 27
-
Scan #35
Page 28
-
Scan #36
Page 29
-
Scan #37
Page 30
-
Scan #38
Page 31
-
Scan #39
Page 32
-
Scan #40
Page 33
-
Scan #41
Page 34
-
Scan #42
Page 35
-
Scan #43
Page 36
-
Scan #44
Page 37
-
Scan #45
Page 38
-
Scan #46
Page 39
-
Scan #47
Page 40
-
Scan #48
Page 41
-
Scan #49
Page 42
-
Scan #50
Page 43
-
Scan #51
Page #51
-
Scan #52
Page #52
-
Scan #53
Page #53
-
Scan #54
Page 1
-
Scan #55
Page 2
-
Scan #56
Page 3
-
Scan #57
Page 4
-
Scan #58
Page 5
-
Scan #59
Page 6
-
Scan #60
Page 7
-
Scan #61
Page 8
-
Scan #62
Page 9
-
Scan #63
Page 10
-
Scan #64
Page 11
-
Scan #65
Page 12
-
Scan #66
Page 13
-
Scan #67
Page 14
-
Scan #68
Page 15
-
Scan #69
Page 16
-
Scan #70
Page 17
-
Scan #71
Page 18
-
Scan #72
Page 19
-
Scan #73
Page 20
-
Scan #74
Page 21
-
Scan #75
Page 22
-
Scan #76
Page 23
-
Scan #77
Page 24
-
Scan #78
Page 25
-
Scan #79
Page 26
-
Scan #80
Page 27
-
Scan #81
Page 28
-
Scan #82
Page 29
-
Scan #83
Page 30
-
Scan #84
Page 31
-
Scan #85
Page 32
Actions
About this Item
- Title
- An introduction to the summation of differences of a function; an elementary exposition of the nature of the algebraic processes replaced by the abbreviations of the infinitesimal calculus, by B. F. Groat.
- Author
- Groat, B. F. (Benjamin Feland), b. 1867.
- Canvas
- Page 29
- Publication
- Minneapoliis,: H. W. Wilson,
- 1902.
- Subject terms
- Calculus
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acm1442.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acm1442.0001.001/82
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acm1442.0001.001
Cite this Item
- Full citation
-
"An introduction to the summation of differences of a function; an elementary exposition of the nature of the algebraic processes replaced by the abbreviations of the infinitesimal calculus, by B. F. Groat." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acm1442.0001.001. University of Michigan Library Digital Collections. Accessed June 17, 2025.