An introduction to the summation of differences of a function; an elementary exposition of the nature of the algebraic processes replaced by the abbreviations of the infinitesimal calculus, by B. F. Groat.

ARRAYS AND DETERMINANTS II may be taken to represent the value and position of the corresponding quantity of the array represented, by having the orders of every pair of associated simple components correspond to the two orders of position referred respectively to rows and columns as has been explained. I6. Coordination of products. The product of any lt constituents of a square array of the nth order, so selected that one and only one constituent is taken from each row and one and only one from each column, we shall refer to as aproduct of the array. There are other ways of coordinating products, but this is the only one with which we shall be concerned. 17. The diagonal row of constituents through the top left hand corner of the array is called the principal diagonal, and the product of the constituents of this diagonal is the principal product of the array. I8. In considering any such product, take the factors in order to the right, beginning at the left. Then, corresponding to this order of factors, there is an order in which they were taken from columns and an order in which from rows. \We shall speak of such an order as the order of choice, or order of selection, from columns or rows as the case may be; when such choice has been made in the natural order of rows or columns we shall refer to it as the natural order of choice. Illustration. What is the order of choice from rows and cola b c d( e f ~ h umns in the product,f /b I e, of the ar:a- I f k /I,'Z n p: The order of selection from columns is 324I, or CZBDA; the order of choice from rows is 4132, or DACB; the order of choice from columns and rows is represented by c4bldsa2, or by 324 I 4132 19. Theorem. In any product of anz array, coordinated as in Art. 16, the total number of inversions of natural ordter in the ordclrs

/ 85

Actions

file_download Download Options Download this page PDF - Pages 8-27 Image - Page 11 Plain Text - Page 11

About this Item

Title
An introduction to the summation of differences of a function; an elementary exposition of the nature of the algebraic processes replaced by the abbreviations of the infinitesimal calculus, by B. F. Groat.
Author
Groat, B. F. (Benjamin Feland), b. 1867.
Canvas
Page 11
Publication
Minneapoliis,: H. W. Wilson,
1902.
Subject terms
Calculus

Technical Details

Link to this Item
https://name.umdl.umich.edu/acm1442.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acm1442.0001.001/64

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acm1442.0001.001

Cite this Item

Full citation
"An introduction to the summation of differences of a function; an elementary exposition of the nature of the algebraic processes replaced by the abbreviations of the infinitesimal calculus, by B. F. Groat." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acm1442.0001.001. University of Michigan Library Digital Collections. Accessed June 17, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.