An introduction to the summation of differences of a function; an elementary exposition of the nature of the algebraic processes replaced by the abbreviations of the infinitesimal calculus, by B. F. Groat.

o0 INVERSIONS AND DETERMINANTS Hence we may represent any n1 quantities in square array by any one of /l a2 (73... a. i / b1 Ci.... l i (I ) (12) (I3)....(In) * bi b2s b....., b 2 b2 C2 6....12 (21) (22) (23).... (21i) Ci C2 C3....C, a3 b C3....n3 (31) (32) (33). * (3) MIZ 712 773... Z., I,, b,l C7n... 7, (?II) (122) (72 3)....(?17n ) I X I I 1 | I 2 3., i 3 3 33 I 2 3 n Sl 11 el 71. 13. In the first array just written the order of any letter is the same as the order of the row containing it, and the order of any suffix is the same as the order of the column containing it. In the second array letters correspond to columns and suffixes to rows. The modes of arrangement in the remaining two arrays are apparent. It is evidently immaterial which one of these, or other similar forms, is used, simply for the purpose of representing a square array. 14. DEFINITIONS. The i2 quantities of an array are called constituents, or elements, of the array. The order of a constituent with respect to rows or columns is respectively the same as the order of the row or column containing it. The order of a constituent with respect to rows and columns is the sum of the orders of the row and column containing it. A square array of n rows and n columns, and consequently containinig i/' constituents, is said to be of the nth order. Care must be taken to distinguish different classes of order. I5. Hence we may not only represent an array of quantities by a similar array of complex symbols, but each symbol * Here of course the figures, and the numbers resulting from their combination, do 2 not have their usual signification; but any symbol, as - or (32), represents the quantitywhich stands in the psitio in te arra represented. stands in the saize position in the array represented.

/ 85

Actions

file_download Download Options Download this page PDF - Pages 8-27 Image - Page 10 Plain Text - Page 10

About this Item

Title
An introduction to the summation of differences of a function; an elementary exposition of the nature of the algebraic processes replaced by the abbreviations of the infinitesimal calculus, by B. F. Groat.
Author
Groat, B. F. (Benjamin Feland), b. 1867.
Canvas
Page 10
Publication
Minneapoliis,: H. W. Wilson,
1902.
Subject terms
Calculus

Technical Details

Link to this Item
https://name.umdl.umich.edu/acm1442.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acm1442.0001.001/63

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acm1442.0001.001

Cite this Item

Full citation
"An introduction to the summation of differences of a function; an elementary exposition of the nature of the algebraic processes replaced by the abbreviations of the infinitesimal calculus, by B. F. Groat." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acm1442.0001.001. University of Michigan Library Digital Collections. Accessed June 21, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.