Abhandlungen zur Geschichte der Mathematik.

Zur Geschichte der deutschen Algebra. 553 est in propositione, 3 latera quadrati in 4 quadratos ducta et productum additum multiplicationi vnius quadrati in se ipsum equum est ei, quod provenit ex ductu 5 quadratorum in 9, sunt ergo ista 3 latera 3 -L et 4 quadrati 43-, que in se invicem ducta proveniunt(!) 12 CC, qui multiplicationi vnius 3- in se, id est I -k-, additi facit(!) aggregatum 12 ce + 1 -- equale multiplicationi 5 quadratorum in 9, id est 45k-. Et quia iam perventum est ad regulam 16, ubi scilicet cC +- a — assimilantur 3-, quare iuxta preceptum eiusdem procedatur, et veniunt 3, valor scilicet vnius lateris, erit ergo vnus quadratus 9. Item aggregaui quadratum multiplicationi eiusdem in se, et erat aggre- B1. 363 gatum equale multiplicationi prioris quadrati in 4 eius latera - 7 quadratis. Queritur de quantitate lateris eiusdem quadrati. Operare sic et pone, quod latus illud sit 1 -, erit ergo quadratus eius 1 -, et quia secundum tenorem propositionis quadratus ille multiplicationi eius in se additus ducatur ergo 1 k- in se, et erit 1 k —, cui addatur 1 3-, et erit aggregatum 1 k-k ---+1 - equale multiplicationi eiusdem quadrati in 6 eius latera, et quia 1 latus est 1 -i, erunt ergo 6 latera 6 -t{, que in 1 - ducte producunt 6 ce, et sic 1 k — -+ 1 - equalis(!) 6 ce - 7 quadratis, id est 7 -. Restaurantur ergo 7 - ex utraque parte addendo, et proueniunt ex vna parte 1 --- -+ 83- equales 8 cC. Et quia iam peruentum est ad regulam septimam deeimam, ubi +-k- - - assimilantur cC, fiat ergo processus iuxta preceptum eiusdem, et veniunt 4, valor vnius lateris, quare 1 quadratus erit 16. Item est quadratus, qui in se ductus tantum valet, quantum tres cubi cum quadrati quadruplo iuncti. Queritur de quantitate lateris illius quadrati. Pone, quod illud latus sit 1 ap, cuius quadratus est 1 3-, qui in se ductus secundum tenorem propositionis procreat 1 -k- tantum valens ex ypothesi, quantum 3 cC cum quadruplo prioris quadrati, id est cum 43-, erit ergo 1 3 — equalis 3 cC + 43-. Et quia iam peruentum est ad octauam decimam regulam, ubi cC +~- - assimilantur 3-k-, quare iuxta preceptum regule procedendo veniunt 4, valor scilicet lateris quadrati. Item est quadratus, qui tantum valet, quantum radix de 27 lateribus. B1. 363'. Queritur de valore vnius lateris. Pone, quod latus sit 1 -, cuius radix est * 1 N', et quia mentio facta est in propositione de radice (de) 27 Np, erit ergo radix (de) 27 2- * 27 2- equale (!) vni quadrato, id est vni 3-. Iam ergo perventum est ad regulam nonam decimam, ubi k- assimilatur radici de e. Procedatur ergo secundum preceptum eiusdem, et veniunt 3, valor radicis vnius scilicet -i, quare quadratus illis radicibus simul collectis equalis erit 81(!), quod fuit propositum. Item sunt 3 quadrati, qui cum simul aggregati tantum valent, quantum

/ 897
Pages

Actions

file_download Download Options Download this page PDF - Pages 542-561 Image - Page 542 Plain Text - Page 542

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 542
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0003.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0003.001/792

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0003.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0003.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.