Abhandlungen zur Geschichte der Mathematik.

Zur Geschichte der deutschen Algebra. 549 gatum 1 -- + 180 0 - 1:- equale radici anguli a b cum angulo a c, scilicet 168. Restauratur ergo:-, et remanent ex vna parte 1 -L + 1800 equale(!) 168 0 + 1 -, adhuc inter se equalia. Et quia idem b genus denominacionis pro utraque parte stare non debet, sub- trahantur ergo 168 0 ex utraque parte, remanent ex vna parte \i6 1 - +- 12 0 equale(!) 1 -. Et quia iam perventum est ad regulam sextam, quare secundum preceptum eiusdem proce- / I6 datur, et veniunt 4, valor - et radix anguli a b, erit d c ergo totus angulus 16, angulus uero a c 164, quod fuit quesitum. Item sunt tres socij, scilicet A, B, C, quorum quilibet certam pecuniarum habet summam. Dicit C: A quidem duplo plus habet quam ego, B uero triplum est ad me, et cum quilibet eorum partem abiecerit, puta A 2 et B 3, et residuum vnius si ductum fuerit in residuum alterius, proveniunt 24. Queritur ergo, quod(!) quilibet eorum habuit, scilicet A et B, et quot ego. Fac sic et pone, quod C habet 1 2-, habebit ergo A 2 %~, quia duplum ad C, et B 3 -t, quia triplum. Et quia quilibet eorum partem abicit, ut A 2 et B 3, habebit ergo A 2 - - 2 et B 3 - 3, que secundum tenorem propositionis in se invicem ducta faciunt 6 - + 6 0 - 12 -L equale(!) 24. Restaurando addantur ex utraque parte 12 -i, et fiunt 66 — + 6 0 ex vna parte et 24 0 -j- 12 i ex alia parte, adhuc inter se equalia. Quia uero idem genus et cetera. Subtrahantur ergo ex utraque 6 0, et remanent 18 0 + 12 -i equale(!) scilicet 6f-. Et quia iam peruentum est ad sextam regulam, ubi 0 +- -i assimilantur -, quare iuxta preceptum eiusdem procedatur, et veniunt 3, valor N- et summa, quam habuit C, habet ergo A 6 et B 9. Item sunt tres socij, quorum quilibet 80 habet -- croci, primus bo- B1. 360'. num, secundus meliorem et tercius optimum, qui in triplo tantum dat pro 1 fl, quantutn secundus et secundus duplo tantum, quantum primus, et omnes tres 100 mercantur fl. Queritur, quantum quilibet dat pro 1 fl. Pone, quod primus det 1 -I pro 1 fl, secundus 2 - pro 1 fl, quia duplum tantum, quantum primus, tercius uero 6 -, quia triplum tantum, quantum secundus pro 1 fl. Examinantur(!) ergo secundum regulam proportionum, quantum cuiuslibet 80 valent t80 dicendo 2 dant 1 fl, quid 8(0)? Facit ~ - que simul addantur, et erit aggregatum 12 6 equale 100. Quia uero 1 12,~~~e -"- c

/ 897
Pages

Actions

file_download Download Options Download this page PDF - Pages 542-561 Image - Page 542 Plain Text - Page 542

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 542
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0003.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0003.001/788

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0003.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0003.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.