Abhandlungen zur Geschichte der Mathematik.

544 E. Wappler: ducem illius proportionis recipiam pro numeratore, aggregatum vero ex duce et comite scribo pro denominatore, et a tota minucia subtraham defectum cuiuslibet numeri, videlicet quod optat ab alijs, vt hic primus petit 7, et erit ipsius triplus. Ponam proportionem triplam in minimis suis terminis, ut sunt hij -, ternariam retineam pro numeratore, deinde addo comitem et ducem, (et proveniunt 4), que seruo pro denominatore, habeo ergo talem Q 3 minuciam, scilicet -, a qua subtraham 7, et manent 4 (ip) 7, que assertio (!) primo. Eodem modo operando invenio, quod B habuit 4 - 9 5 23 et C - 11. Aggrega has partes, et proveniunt 2 + 60 - 27, hoc aggregatum ex ypothesi est equale 1 q, quia dixit omnes simul habere 1 -. Addo utrobique 27, subtrahendo ab aggregatis 1 -p, et remane(n)t ex vna parte 260 - 1 2-6 equales 27 0 ex altera parte. Diuide 0 per -i, et proveniunt 19 (l9, 9 8 valor, et tantum habent omnes simul. Sed 83 3 4 5 quia positum est supra, quod A habeat 4 -L - 7, B 5 - 9, C - - 11, 53 51 23 ( 22\8) habet A necessario 7 B 6 C 5 - 5 83 1 83 1 83 B1. 355. Quidam habuit pueros et denarios et dixit: si cuilibet do 2 ^, manent in residuo 5 denarij, si autem cuilibet do 3:i, deficio in 6 2\. Queritur quot sint denarij, et quot sint pueri. Fac sic. Pone 0 puerorum 1 - et da cuilibet 2, scilicet multiplicando 1 - per 2, et erunt 2 -, et quia debet habundare in 5 denarijs, erunt ergo 2 - + 5. Pone secundo iterum 0 puerorum 1 2- et da cuilibet 3 &, scilicet multiplicando 1 - per 3, et erunt 3 -. Sed quia debent 6 deficere, subtrahe 6, et erunt 3 - 6. Et primo ponebatur, quod puerorum 0 esset 2 - + 5 (!). Equa partes addendo 3 - 6 0. Adde etiam ad 2 i( (+ 5 0) 6 0, et erunt 2 -- + 11 0 in vna parte, in alia parte 3 -. Subtrahe iterum 2 x2 ubilibet, et manet 1 - equalis 11 0. Fac secundum regulam9). 1 2 B1. 355'. Item quis est 0, cuius - ducta in - facit 13. Dico, quod ille 0 1 2 2 est 1 Lf, cuius ducta in - facit 35- equales 13 0. Diuidatur ergo 0 455 per 5, et veniunt 2, cuius radix quadrata ostendit quesitum. Et quia 1 2 1 est surdum, quadretur quelibet pars, seilicet - et - facit - prima et 8) Diese Aufgabe fehlt im Marienberger Manuskript. 9) Diese Aufgabe hat RIESE weggelassen.

/ 897
Pages

Actions

file_download Download Options Download this page PDF - Pages 542-561 Image - Page 542 Plain Text - Page 542

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 542
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0003.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0003.001/783

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0003.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0003.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.