Abhandlungen zur Geschichte der Mathematik.

518 Friedrich August Unger: terial der Rechenmaschinen3) zu geben; weil aber die Anzahl derselben sehr grofs und der zugemessene Raum sehr klein ist, so hätten die Notizen darüber sehr kurz gehalten werden müssen; dadurch wäre aber der Nutzen für den Leser äufserst gering geworden. Deshalb beschränke ich mich darauf, hier nur einige Additionsmaschinen4) zu beschreiben und zwar einige neuere, eine für einzifferige Zahlen, eine für zweizifferige und vier für grofse Summanden. Drei von den Maschinen sind deutsche, drei aber amerikanische Erzeugnisse. 1. Behers Additionsmaschine. Diese Maschine ist ein Apparat, der dazu dient, grofse Kolonnen einzifferiger Zahlen zu addieren; 499 ist die gröfste Summe, die erreicht werden kann; es gehören indessen schon viele Summanden dazu, ehe die Summe einer Kolonne so grofs wird. Will man mit der Maschine arbeiten, so müssen vorher die Summanden gehörig untereinander gesetzt werden. Darnach addiert man mit der Maschine jede Kolonne gesondert. Schliefslich vereinigt man die Kolonnensummen in gewöhnlicher Weise zur Totalsumme. Wie leicht ersichtlich, tritt eine Zeitersparnis kaum ein; der Nutzen liegt vielmehr in der Schonung des Gehirns. Die beiden Hauptteile der Maschine sind eine horizontal liegende und um ihren Mittelpunkt drehbare Ziffernscheibe und eine Klaviatur. Die Ziffernscheibe trägt auf der Oberseite an der Peripherie einen Zahlenkranz der ersten 99 Zahlen und Null; alle sind zweistellig geschrieben, also so: 00 01 02... 11 12... 99. Die zweistellige Schreibweise ist nötig wegen Bildung der Summen (siehe unten). Auf der Unterseite der Scheibe sitzt unter jeder Zahl ein senkrechter Stift. Gedreht wird die Scheibe durch eine Triebfeder, die man durch einen Hemmungsmechanismus wirken lassen und arretieren kann. Links an der Scheibe befindet sich eine Skala mit den 5 Ziffern 0 1 2 3 4, die bei der Bildung der Summe als Hunderter 3) Die ganze Sammlung von Rechenmaschinen erscheint binnen kurzem am geeigneten Orte. 4) Ausgeschlossen bleiben die Rechenbretter und Zahlschnüre der Alten, sowie die in den Elementarschulen gebrauchten Zählapparate, die mit Unrecht Maschinen genannt werden. Eine vollständige Zusammenstellung der Apparate von der letzten Art giebt MAX HÜBNER, Verwalter des Städt. Schulmuseums zu Breslau, in dem "Führer durch die Ausstellung in der Turnhalle am Lessingsplatz", herausgegeben anläfslich der "Deutschen Lehrerversammlung in Breslau vom 30. Mai bis zum 2. Juni 1898".

/ 897
Pages

Actions

file_download Download Options Download this page PDF - Pages 502-521 Image - Page 502 Plain Text - Page 502

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 502
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0003.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0003.001/757

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0003.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0003.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.