Abhandlungen zur Geschichte der Mathematik.

De Inquisicione Capacitatis Figurarum. 57 circinabo semicirculum bkh et producam ck: dico igitur, quod linea c7 est latus tetragonicum parallelogrammi bcgf, et per consequens trianguli abc. 39. Si vero velis latus tetrctaonicnum cuorum vel trium vel plurium triangulorum, vel eparallelo- I Fsi. pmm gramnmorun, tunc expedies te de primo, ut dictunm \ 5 est, et sit illud latus verbi gracia, ut prius, ck. Deinde de secundo expediens ipsum prioris extre- \ mitate orthogonaliter in directo coniunge, quod / verbi gracia sit kl, et protrahe lineam cl1 et ipsa / erit latus tetragonicum amborum triangulorum. \ 10 (Fig. 31.) Si vero volueris latus trium triangulorum vel parallelogrammorum, tunc invento latere tercii per modum iam dictum ipsum lateri iterum ortho- gonaliter coniunge, quod sit verbi gracia Im. i5 Deinde duc lineam cm, et ipsa est latus tetragonicum omnium trium triangulorum vel parallelogrammorum, de quibus operatus fueris. 40. cDaace figuzrae rectilineae cizuscuzmque latus tetragonicum invenire. (Fig. 32.) Latus tetragonicum dicitur illud, Fig. 32. 20 quod, si in se ducatur, constituit qua- dratum aequale figurae datae. Si igitur data figura rectilinea fuerit 218' multi|angula, ipsam, ut facit CAMPANUS / in commento 32ae primi EUCLIDIs,50) 2 aut secundum quod tibi figura ostendit, d in triangulos ductis hineinde ab angulis eius lineis resolve, et cuiuslibet trianguli - per ultimam secundi EUCLIDIS 51) quadratum aequale singillatim quaere, quia quodlibet latus quadrati huius- 30 modi est latus tetragonicum trianguli illius, cui quadratum aequale invenisti. Dum igitur omnium triangulorum, in quos data figura fuit resoluta, sicut praedicitur, scilicet cuiuslibet singillatim, latus tetra17. Hier ist im Mscpt. der oben als ~ 29 abgedruckte Abschnitt eingefügt. - 27. inter angulos. 50) CAMPANUS ad EUCLIDIS I, 32: Es zerlegt hier CAMPANUS die Vielecke entweder durch Diagonalen, oder durch Radien bei regulären Vielecken, in Dreiecke, Hierauf verweist unser Verfasser. 51) EUCLIDES II; 14: Siehe Aum. 16.

/ 897
Pages

Actions

file_download Download Options Download this page PDF - Pages 56-75 Image - Page 56 Plain Text - Page 56

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 56
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0003.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0003.001/62

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0003.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0003.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.