Abhandlungen zur Geschichte der Mathematik.

De Inquisicione Capacitatis Figurarum. 49 aequales, scilicet de, cuius centrum a; ef, cuius centrum c; et fd, cuius centrum b, et trahantur lineae rectae ac, cb, ba. Ergo per 11am tercii EUCLIDIS 3) omnes tres lineae praedictae transibunt per puncta contactus circulorum, et per consequens per fines trianguli def. Quia igitur latera trianguli nota sunt, quia aequalia dyametris circulorum, et sit verbi gracia 5 quilibet ut 14, ergo per i'ta huius area trianguli est 84. Deinde ornnium trium sectorum latera sunt nota, arcus autem sic scientur. Angulos figurae per lineas inter centra circulorum tractas causatae dupla, et erunt verbi gracia in triangulo sex. De quibus deme quatuor, et remanent duo anguli recti, quos duos rectos divide per numerum angulorum figurae, scilicet per lo 3, et proueniunt cuilibet angulo trianguli 2 unius recti. Et quia cuilibet angulo recto super centrum circuli constructi prout circumferencia cir214 culi est 360, correspondent 90 gra, ergo u- nius recti correspondent s de 90 gradibus, quae sunt 60 gra, et idem est arcus cuiuslibet sectoris. Prout autem circumferencia est 44 partes, uni recto corre- ig. 19. 15 1 spondent 11 pt, scilicet 4 circuli, et duabus terciis recti..h-_ 1 correspondent 7 partes et 1 unius. Igitur per ultimam d- sexti EUCLIDIS36) quilibet arcus sectoris erit totidem, scilicet 7 partes et - unius. Ergo per quartam huius area unius porcionis erit 25 p' et 35 m', et omnium trium simul 20 76 pa et 45 mii. Dempta igitur area omnium sectorum de area trianguli remanent 17 p' 15 mi, quae sunt area figurae curvilineae def, quae quaerebatur. 24. Colusmpnae rotundae datornum basis et altitzudiis arceaa invenire. (Fig. 19.) 23 Columpna rotunda, ut vult EUCLIDES37) 1lma diffinicione undecimi, est transitus parallelogrammi rectanguli latere rectum angulum continente fixo ipsaque superficie, donec ad suum locum redeat, circumducta. Columpnae datae basis circumferenciam, verbi gracia ut 44, duc in 30 27. lateris. 35) EUCLIDES III, 11: Si circeulus ci'rculum contingat, lineaque per centra transeat, ad punctum contactus eorum apcplicarii necesse est. 36) EUCLIDES VI, 32: Siehe Anm. 31. 37) EUCLIDES XI, Def. 11: Figtzra corporea rotunda, cuieus bases sunt circuli duo plani extremitatibuts et crassitudine, id est altitudine, aequales, est transitus parallelogrammi rectanguli latere rectum angulon continente fixo ipsaque superficie, donec ad locum suumn redeat, circumdzucta. Diciturque haec figura columna rotunda. Abh. zur Gesch. der IMathem. VIII. 4

/ 897
Pages

Actions

file_download Download Options Download this page PDF - Pages 36-55 Image - Page 36 Plain Text - Page 36

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 36
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0003.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0003.001/54

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0003.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0003.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.