Abhandlungen zur Geschichte der Mathematik.

De Inquisicione Capacitatis Figurarum. 47 Esto igitur pentagonus a b c d ce cuius centrum f. A vicinis ergo angulis, scilicet a et b, ducam lineas af et bf, et a medio lineae ab lineam gf. Pentagoni igitur illius tocius omnes anguli siniul sumpti valent sex rectos, ergo quilibet angulus eius singillatim valet unum rectum et-6 unius; et medietas eius, scilicet angulus fbg, erit recti et eius, quod 5 3 est - unius recti, ergo reliquus angulus b fg, residuum unius recti, erit 2 recti, cum angulus g sit rectus. Ergo per 30an tercii EUCLIDIS30) latus fb erit dyameter circuli circumscripti triangulo fbg. Et quia duo anguli recti in quolibet triangulo contenti valent 180 gra circuli sibi circumscripti, ergo per ultimlam sexti EUCLIDIs31) arcus gf habebit eciam - de 180, o scilicet 108, cuius corda 97 partes 5 m'; et arcus bg habebit secundum hoc e, residuum scilicet de 180, quod est 72 gradus, cuius corda est 70 partes 38 m. Posito igitur, quod latus pentagoni sit ut 6, medietas eius g b erit ut 3, ergo secundum eandem proporcionem latus fg erit 4 partes et 8 ma. Cum igitur duxeris bg, scilicet 3, in gf, scilicet in 4 15 partes et 8 ma, producitur area trianguli Fig. 17. abf, scilicet 12 partes et 24 m'. Quae si d quinquies accipies 62 proveniunt, area scilicet \ tocius, quod erat assumptum. Et per eundem / modum de omnibus aliis figuris poligoniis 7 /- e zt__ e 20 aequilateris operare. Si vero ex eis aliquae earurr inaequalium laterum occurrant, prius in triangulos resolvan- / 213 tur, | deinde per undecimanm huius operare. 22; Pentagoni Salemonis32) aream in- 3 25 venire. (Fig. 17.) Sit igitur pentagonum Salemonis fdehg, cui circumscribam circulum fdehg super centrum c, et lineam fe dividam per medium in puncto a, et 7. - recti. - per 3anm tercii. - 24. decinam. habuerint angulos per 13 propositionem. Intrinseci auten sunt bis tot rectis aequales, quot habuerint angulos, demptis inde quatuor etc. 30) EUCLIDES III, 30: Si rectilineus angulus in semicirculo supra arcun consistat, rectus est. 31) EUCLIDES VI, 32: Si in circulis aequalibus supra centrum sive supra circuzferentiam anguli consistant, erit angulorum proportio tanquam proportio arcuum illos angulos suscipientium. 32) In geometrischen Abhandlungen tritt uns hier wohl zuerst das Sternfünfeck als Salomonisches Fünfeck entgegen.

/ 897
Pages

Actions

file_download Download Options Download this page PDF - Pages 36-55 Image - Page 36 Plain Text - Page 36

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 36
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0003.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0003.001/52

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0003.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0003.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.