Abhandlungen zur Geschichte der Mathematik.

38 Maximilian Curtze: embadum circuli per praecedentem 154. Sicut igitur se habet tota cireumferencia acb ad arcum sectionis ac, sic se habet totum embadum circuli acb ad embadum sectoris adC. Patet per PTOLEMAEUM10) in almagesti dictione sexta capitulo 7~, ubi 5 dicit: ~Et quia proportio orbium ad arcus erit aequalis proporcioni superficierumn ipsorum ad superficies sectorun." Idem patet per corrolarium quartae trium fratrum.11) Duc igitur areum sectoris, ut numeri secundi, in circuli embadum, ut tercium, et divide per primum, scilicet per circumferenciam circuli, 208 1 10 et 38 et - unius, quod est embadum sectoris, producitur. 6. Splhaerae, cuius maximus fuerit datus circuFig. 2. tlus, planiciem indagare (Fig. 2.) y~""'-^" ~ Esto sphaera, cuius maximus datus circulus sit ab, et dyameter tota verbi gracia 14. Ergo per 15 quartam huius embadum circuli erit 154, quod si c quadrupletur, exurgit embadum sphaerae praedictae, ~\.I / scilicet 616. %\ ~~ // Patet per 15a trium fratrum. 2)..... b,-/ Quod idem est, ac si dicatur: dyametrum in cir20 cumferenciam circuli multiplica. Idem enim producitur. 7. lDatum circulumn incrassare. (Fig. 2.) Circulum incrassare13) voco sphaerae molem seu magnitudinem, cuius.maior circulus fuerit datus, invenire. 10) PTOLEMAEUS citiere ich nach der Uebersetzung des GERHARD VON CREMONA in der Ausgabe: Almageftü CL. Ptolemei | Pheludienfis Alexandrini Astronomo2; principis: 1 opus ingens ac nobile omnes Celorü mo[-tus continens. Felicibus Aftris eat in [ luce3: Ductu Petri Liechtenstein 1 Coloniefis Germani. Anno Virginei Partus. 1515. 1 Die. 10. Ja. Venetijs 1 ex officina eiuf-Idem litte-lraria. j]**1 Cum privilegio. In dieser Ausgabe heisst es Blatt 68a, Dictio Sexta, Capitulum septimum, Zeile 44-45: Et quia proportio orbium ad arcus est equalis proportioni superficielrun earum ad superficies sectorum. 11) Liber trium fratrum, IV, S. 19, Z. 5ff.: Et iam scitlr ex illo, quod narravimus, quod, cum sumitur ex circulo abg arcus, quicumnque arcus sit, et protrahuntur ex duabus extremitatibus eius duae lineae ad centrum circuli, est embadumn huius trianguli, quem continet iste arcus et duae lineae, quae protractae sunt ab extremitatibus eius ad centrum, illud, quod fit ex multiplicacione medietatis dyanetri circuli abg in medietatem arcus assumpti ex eo, et illud est propositum. 12) Liber trium fratrum XV: Multiplicacio medietatis dyametri omnis sphaerae in terciam embadi suae est embadum magnitudinis sphaerae. 13) Das Wort incrassare circulum für Berechnung des Rauminhaltes einer Kugel kommt meines Wissens zuerst bei GERBERT vor. Dort heifst es: Circulum incrassare si vis etc. (Oileris, C. LVI; LXXXII), obwohl BLUME in den Gromatici

/ 897
Pages

Actions

file_download Download Options Download this page PDF - Pages 36-55 Image - Page 36 Plain Text - Page 36

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 36
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0003.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0003.001/43

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0003.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0003.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.