Abhandlungen zur Geschichte der Mathematik.

DE INQUISICIONE CAPACITATIS FIGURARUM. 1 Aliquid de inquisicione capacitatis figurarum et quibusdam aris- 207 metricis orsurus dico, quod figurae capacitas dupliciter ad presens. Sumitur uno modo pro superficie tantum, et sic est planicies, area, podismus, cam5 pus, spacium, pedatura, fundus, embadum, seu superficies figurae absoluta vel linea seu lineis interclusa. Alio modo est tota moles solidi in relacione alicuius mensurae eam mensurantis considerata etc. Et quia cireulus est figura omnium figurarum simplicissima, una enim tantum, ut vult EUCLIDES1) in primo suorum elementorum, linea continetur, a qua ideo 10 non immerito, ut testatur dominus MOYSES in principio suarum penthadoFig. 1 narum,2) illud universale rerum commune opus inFig. i. g, ~ cipit: ab illa igitur hic principium facere non indigne C ' —^\ complacuit. 1. Dati circuli centrun invenire. (Fig. 1.) 15 Sit cireulus datus abc, in quo ducam lineam rectam extremitates suas cireumferenciae circuli appliL \ ^-d C canter, quomodocumque contingat; quae sit ac, quam per 10am primi EUCLIDIS3) diuidam per medium in puncto d. A quo puncto per 11am eiusdem primi 20 duco perpendicularem ad lineam ac, quam applico transscendere cireulum ex utraque parte, quae sit edb; quam rursus divido per aequalia in puncto f, quem dico centrum circuli esse. Patet per primam tercii EUCLIDIS4) et per CAMPANUM5) ibidein. 1. Fehlt im Mscrpt. - 11. ille universalis rerumz opus commune opus. - 23. Hier schiebt das Mscpt. ein, was wir unten in ~ 8 am Schlusse haben abdrucken lassen: Badix quadrata... 36 2a. 1) EUCLIDES I, Def. 19 (ich citiere nach der Campanoschen Ausgabe): Circulus est figura planac una quidem linea contenta, quae circumferencia nominatur. 2) Worauf sich diese Bemerkung beziehen soll, weifs ich nicht. 3) EUCLIDES I, 10: Proposita recta linea eam per aequalia dividere. 4) EUCLIDES III, 1: Circuldi pr'opositi ceitrum invenire. 5) Es ist hier offenbar der Beweis des EUCLIDES dem CAMPANUS zugeschrieben, wie dies so häufig geschehen ist. Die von unserem Autor beliebte Construction ist nichts weiter als die Euclidische.

/ 897
Pages

Actions

file_download Download Options Download this page PDF - Pages 36-55 Image - Page 36 Plain Text - Page 36

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 36
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0003.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0003.001/41

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0003.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0003.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.