Abhandlungen zur Geschichte der Mathematik.

116 Maximilian Curtze: ~ 30. In trigono orthogonio circulum inscribere si vis, qui omnes eius lineas tangat sic quaere. iunge kathetum et basim, deme hypotenusam, 35 erit diametron circuli. 25) Daran schliessen sich noch einige ähnliche Paragraphen Blatt 90r, 11-90v 5. Sphaera fuerit data, cuius dyameter sit pedum VII, eius solidos pedes sic quaere. Multiplico dyametrum, id est VII in cubo. Primo in se, fit pedes XLVIIII. Deinde hoc rursus per VII, fiunt pedes CCCXLIII. hoc semper ducimus per undecim, fiunt III DCC. LXXIII pedum. Huius 40 sumamnus partem XXI, fiunt pedes CLXXVIIII; tot pedum erit eiusdem inauratum.1) Si datus fuerit circulus, cuius area habet pedes VI centos XVI, et scire volueris dyametrum eius I sic invenias. ducas quater decies areae 90v pedes, fiunt pedes VIII * DC XXXIII. Dehinc hanc summam partiaris 45 per XI, fit undecima pars DCCLXXXIIII. Huius summae latus est XXVIII; tot pedum erit diametrum. 26) Es folgt ein Abschnitt (Blatt 90V, 5-92r, 14) mit der Ueberschrift: DE GEOMETRIA COLUMNARtUM ET MENSUIIS ALIIS. Geometria columnarum hoc modo fieri debet ab artifice, ut fiat, cuantum grossa possit esse, quantaque eius longitudo fuerit. Columna septimam partem longitudinis debet habere in imo, hoc est in parte, quae 5 supra pedem manet. Superior autem pars columnae, ubi capitellum insidet, octauam partem debet longitudinis tenere.2) Mensura columnarum, ut possit aestimari, quantam altitudinem possit tenere mensurandi in circuitu. Si habuerit collurus super stragulum in circuitu pedes V, habebis in altum colluris pedes XII et dimidiam. Si 10 habuerit vero collurus in circuitu pedes (X), habebis in altum pedes XXV, quoniam unus pes in circuitu levat in altum pedes duos et dimidiam. Si columna fuerit, quae sit in imo lata pedum XIII, in summo lata pedum V, alta pedum XXX, si scire voluerimus, quot pedes solidos haec teneant, multiplicemus latitudinem imam in se, hoc est XIII, fiunt CLXVIIII. 15 Dehinc multiplicemus summam latitudinem in se, hoc est V, fiunt XXV. Deinde multiplicemus primam summam quinquies, quinquies enim XIII fiunt LXV. Post haec metiamur has tres summas in unum, fiunt CCLVIIII. Haec ducamus per XI. Undecies enim CCLVIIII faciunt II DCCC XLVIIII. Hinc igitur sumamus partem decimam quartam, lquod sunt CCIII et semis. 1) Quelle vom 2. Absatz des Cap. 82 bei GERBERT OLLERIS 464. 2) Dies ist die Quelle für den ersten Absatz von GERBERTS Cap. 82. (OLlERIS, 464.)

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 110-129 Image - Page 110 Plain Text - Page 110

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 110
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/787

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.