Abhandlungen zur Geschichte der Mathematik.

Algebra in Deutschland im 15. Jahrhundert. 37 Postea multiplica 12 per 4 per modum crucis, facit 48; deinde iterum per modum crucis 9 per 8, facit 72, a quibus subtrahe 48, et remanent 24, que divide per 4, et habebis 6 anates. Postea multiplica 4 per 20, facit 80; 43 similiter 21 per 8 | facit 168, a quibus subtrahe 80, et remanent 88, que divide per 4, exibunt 22 galline. Similiter multiplica 8 per 4, facit 32, 5 et multiplica 8 per 10, exibunt 80, a quibus subtrahe 32, et renanent 48, que divide per 4, exibunt 12 columbae, et sic habes 6 anates, 22 gallinas, 12 columbas: 40 aves, que valent 40 gl. Prima posicio Secunda posicio Anates 12 9 anates 10 Galline 20 // 21 galline Columbe 8 10 columbe plus 8 - 4 plus 4 divisor 15 43' Eciam sunt 12 anates, 4 galline, 24 columbe. Exemplum tercie partis regule. Szmt duo socii volentes emere duos equos: Primus 1 equZum pro 20 fl, secundus pro 25 fl. Et dicit primus sccundo: da mihi t- tue peczuie, tunc ego solvamn equum precise pro 20 fl. Sed secundus dicit primo: da mihi - tuee peczmie, et ego solvam 25 fl precise. 20 Volo nunc seire, quot habuit quilibet. Pono primo unam posicionem falsam, videlicet, quod primus habeat 12 fl, secundus 24. Modo dicit primus secundo: da mihi - de tua pecunia, videlicet 24, et est 8, ad meas et facit 20 fl; sed secundus dicit primo: da mihi 4 de tua pecunia, scilicet de 12, et constat, quod sunt 3. Adde 25 3 ad 24 fient 27, que 27 excedunt 25 in 2. Secundo pone, quod primtus habeat 16 et secundus 12, tunc deficiunt 9 fl. Modo regula licit, quando in una posicione est superabundancia et in altera defectus, debent simul 44 addi, et aggrega!tum ex eis est divisor communis. Adde ergo 2 ad 9, fient 11. Postea multiplica in modum crucis 9 per 12, fient 108; simi- 30 liter 2 per 16, fient 32, que adde ad 108 fient 140, que si diviseris per 11 8 exibunt 121 fl, que est summa primi, quem habuit. Similiter multiplica 9 per 24, exibunt 216, et 2 per 12, fiunt 24; que adde ad invicem, fient 240. Que si diviseris per 11, exibunt 21? fl, summa secundi. 16. Auch hier kennt der Verfasser mehr als eine Lösung. Allgemein erhält man n Enten, 40-3 n Hühner, 2 n Tauben. Die speciellen Lösungen ergeben sich für n = 6; 12.

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 30-49 Image - Page 30 Plain Text - Page 30

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 30
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/708

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.