Abhandlungen zur Geschichte der Mathematik.

Ptolemäus de Analemmate. 27 in quo distinguitur quod quidem z l super terramn semicirculi et quod lk sub terra. accipitur autem signum 1 per platinaml) rectangulam, si angulus adductus fuerit ad hi ita ut alterum laterum adaptetur ipsi zk.2) secundum quoc enim reliquum3) secat semicirculumn erit determinatum signum, quoniam quidem que ab h4) ipsi hk5) perpendicularis producta fit sectio planorum orizontis et circuli mensilis. diuidatur itaque portionuri utraque in 6 equalia, et signatis ipsis accipiantur per appositionem6) platine rectangule et signa super zA facta a perpendicularibus ad ipsam ab acceptis diuisionibus in semicirculo. sit autem una earum que super terram que penes m et quod eiusdem ordinis cum ipso signum eorum que super zh quod n. centro quidem itaque ipso n et distantia nm accepto secundum meridianum signo x et latere7) adducto ad signa e et h, ita ut secet meridianum penes o, que quidem zo periferia faciet residuam in quarta periferie ektimori, que autem ab x super sectionem c/ alterius8) ipsius9) et meridiani ipsam que ektimori. consequenter autem centro h et / distantia hnh accepto secundum meridianum r n t b signo p que ap periferia faciet eam que horarii. similiter autem centro t et distantia tm accepto secundum meridianuin signo r que gr periferia faciet eam que descensiui. rursum que quidem ao periferia faciet eamn -\ L que meridiani. si autem unum laterum10) apposuerimus ipsi n reliquo adaptato ipsi ge, et cancri1) distensionem habentis12) equalem ipsi nm alterum quidein terminumn apposuerimus13) ei que penes angulum rectum portioni ipsius ge, alterum autem apposuerimus ei quod apud n lateri, deinde hoc manente conuerterimus latus quod ad ipsum seruata ipsorum coniunctione ad centrun e, ita ut secet meridianum penes s, que g s periferia faciet14) eam que eius qui secundum verticem. similiter autem rursum, si unum laterum apposuerimus ipsi n altero adaptato ipsi ae et cancri distensionem habentis eandem ipsi nm alterum quidem apposuerimus ei que secus rectum angulum portioni ipsius ae, alterum 1) Am Rande: tcarVG6car. 2) Bei dieser Zeile am Rande: io. Ca. 3) Hierzu am Rande: 'scilicet latus. 4) Hierzu am Rande: -uel n. 5) Bei dieser Zeile am Rande: /. 6) Darauf: p. 7) Lücke, am Rande: rttarv6ear. 8) Uebergeschrieben: scilicet lateris. 9) Lücke, am Rande: ltcrvvas~car. 10) Lücke, am Rande: irlatctv. 11) -i corrigirt aus o. 12) -is corrigirt aus e, 13) Darauf getilgt: portioni; ei ist übergeschrieben. 14) -t corrigirt.

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 10-29 Image - Page 10 Plain Text - Page 10

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 10
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/698

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.