Abhandlungen zur Geschichte der Mathematik.

Ptolemäus de Analeinmate. 25.........1) K1vcg &VoxQa>|l|(Lg) üEi.V12) TO Kv>o 'E(5)}<lVov >O -.............. O E...n.. r* * KE6'1wov>vö vw4tnclvov 6nq. *. *...* 3) Hiis auteln suppositis facile in promptu nobis erit acceptionum unaqueque, si prius quidem ordine assequentes radici supposite eleuationis diametros copulauerimus orizontisque et gnoinonis, deinde tropici semicirculi sectionem distinguentem quod supra terrain ab eo quod sub terra et utrarumque harum portionum in sex equalia diuisiones acceperiinus et in propria ipsius diametro factas a diuisionibus super ipsam perpendiculares. hiis enim solis contenti procedemus secundum modum ostendendum. primas quidem igitur rursum eas que ektimori circuli secundum quamlibet horam periferias, has quidein ex portione super terram consistentes proprii signi ea que mensilis positione, has autem ex ea que sub terra eius quod ex opposito sibi. deinde eas que horarii oomnium horarum, postea eas que descensiui et rursum conuenienter eas que meridiani seorsum. deinde eas que eius qui secundum verticem, post quas eas que orizontis, et ultimas, si uoluerimus, eas que in plano equinoctiali. post hoc autem acceptas quidem designationes liniemus.1) simiilia autem faciemus in reliquis duobus mensilibus utroque in parte et similiter in equinoctiali. deinde et priores diametros simul ablinientes copulabimus eas que consequentis climatis et eodem ordine utentes pertransibiimus omnes suppositas differentias. ceterum autem gratia modi acceptionis periferiarum subtensarum angulis exponatur meridianus qui in2) et sit abgd circa centrum e, et copulentur per regulam examinate rectam que quidem ab diameter secundum communem sectionem ipsius et orizontis, qve autemn gd secundum gnomonem. subiaceatque prius que z eh diameter equinoctialis, et sit que quidem in duo equa sectio semicirculi zth penes t, qve autem super terram quarta zt, horariarum autem que in ipso sectionum una quidem que penes kc, et3) quod a perpendiculari per ipsum4) ad z e fit in ipsa signuin, sit 1; 1) Hier scheint ein Stück im Griechischen gefehlt zu haben. 2) rov. 3) Der Rest der Seite unlesbar; hier stand Fig. 7, deren Buchstaben aber nicht zu erkennen sind. 1) abliniemus, ani Rande: 7cCrXEi!9oi. 2) Lücke, am Rande: ava,;tgc, 3) Getilgt: signum. 4) Ueber ipsum: scilicet k.

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 10-29 Image - Page 10 Plain Text - Page 10

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 10
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/696

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.