Abhandlungen zur Geschichte der Mathematik.

14 J. L. Heiberg: d6' 'g rt ig V7cEo yi7vl) | tEQct(po{g totam circulationem supra terramin Ertl ve zov L6qlEQLvo~ zaC rc) v2) equinoctiali et in parallelis borealiovortcorlEcoV3) avroD 7taaXXqcov 6ai ribus1) ipso, quia inclinatio spere2) zto vIv XKLV Zrg 6cpatcag v vf in habitata secundum nos versa est xOC ~eg oblovdvEV TErtgecpP'at 7cog ad meridiem, et oportet adnuitiones E(ßQ5LaFQirß v, | al &lJ vtcg 2tQoovEv6EL consequentes positioni ipsius deteraolXoa0itov a.vrr |1 minare, manifestum. continet autem angulus qui sub ekcl, hoc est qui sub tek, angulumn) cireuli ektimori, qui sit idem, ut diximus, hie ei qui in plano equinoctialis, angulus autem qui sub aen eum qui horarii, qui autem sub geo eum qui descensiui, et rursuni qui quidem sub a ez eum qui meridiani, qui autem sub gec eum qui orizontis. Exponatur itaque rursum qui p<5, ~ "\ / 4. c'abgdc meridianus cum diametris ab </' \ N\/ | o/<p^ \ et gd, et protrahantur in ipso dia/ \ \ / N^ yV l metri parallelorum mensilium bore\ \\ * //^^^ \ i ß aliorum equinoctiali zhtk, super quam -_ \1 / - |, /b similiter describatur semicirculus orientalis qui zlk, et ad rectos angulos ipsi sk ducatur que tl, ita ut zl portio paralleli sit super terram. absumpta autem Im periferia datarum horarum ducatur ab m perpendicularis super zt que m n ipso n faciente uidelicet positionem radii borealiorem quidem circulo qui secundum verticem, quando fuerit super ht, australiorem autem, quando fuerit super zh. protrahatur etiam rursum que enx, et recta ad ipsam erigatur que eo. accipiantur igitur in meridiano signa tria, centro quidem n, distantia autem mn quod p, centro autem t, distantia uero tm quod r, centro etiam h1, distantia autem hmn quod.2) deinde productis rnc et sny - ipse enim sunt per n accepte perpendiculares ad eb et eg - absumantur in ipsis similiter equales ipsi mn que ynf et cnq, et copulentur que ep et er et es et mt et adhuc que eftp et que eqco. continet itaque et hie angulus quidem qui sub peo angulum circuli ektimori, qvi autem sub ber eum qui horarii, qvi uero sub geo eum qui descensiui, et rursum qui quidem sub bex eum qui meridiani, qvi autem sub g ei eum qui eius qui secundum verticem, 1) yir. 2) Tci. 3) VoV(e)ovEQov V 1) Am Rande: australioribus in (muss heissen: oqestoreQov). greco. 2) ife. 1) Hier getilgt: qui. 2) Folgt eine kleine Lücke, am Rande: e.

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 10-29 Image - Page 14 Plain Text - Page 14

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 14
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/685

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed June 19, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.