Abhandlungen zur Geschichte der Mathematik.

10 J. L. Heiberg: eas autem que in manentibus similiter meridionales et secundum verticem et orizontes. et in magnitudinibus semper eligimus acutum angulum consistentium ex utraque parte, si non sint recti, et principia acceptionum facilnus earum quidem que in circulis motis ab altero polorumi circulationis, ad quam declinatio, hoc est in hiis quideni que ipsius ektimoril) a termino diametri equinoctialis ante niediationem quidem celi ab orientali, post mediationem autem ab occidentali, in hiis autem que horarii a termino diametri meridiani, quando quidem positio radii fuerit borealior circulo qui secundum verticem ab arctico, quando autein australior, a meridiano, quod et ipsum oportet obseruare, quoniam non eandem habet determinationem; in hiis uero que descensiui solurn a termino gnomonis qui super terram. earum autem que in circulis manentibus ab altero termino tanquam communi sectione uniuscuiusque et suppositi plani, ad cuem faciens angulum declinatio, hoc est in hiis quidem que meridiani a2) termino recte meridiane radio quidem existente borealiori quam circulus qui secundum verticem ab arctico, australiori autem a meridiano; et hoc enim rursum oportebit determinare; in hiis que eius qui secundum verticem a termino qui super terrain gnomonis solum, in hiis autem que orizontis a termino diametri equinoctialis ante mediationem quidem celi ab orientali, post mediationem autem celi ab occidentali vel borealiori quidem existente radio quam circulus qui secundum verticem ut ad aquilonem, australiori autem ut ad meridiem; quod et ipsum oportebat3) obseruare, et quia uniuersaliter eas que ex utraque parte positiones earum, que in ortibus uel occasibus determinantur, dico autem earum que horarii et earum que descensiui et earuin que eius qui secundum verticem, mediatio celi simpliciter designat, earum autem que versus aquilonem aut meridiem, dico autem earum que descensiui rursum et earum que ektimori et earum que meridiani et earum que orizontis, positio radii ex utraque parte circuli qui secundum verticem, et has ipsas non habentes unum et eundem terminum. Premissis itaque hiis exponemus instrumentales acceptiones secundum unamquamque speciem subiacentium nobis angulorum exempli gratia, ut promptam habeamus methodum, que erit in.4) prius autem5) 119 (fast ganz unlesbar) secundum se superueniemus super Z<X>(v) zsg QcXga8Ae8eEv roLog Co- anguli') praetermissi ab antiquis, 120 AaTyiov,,la)[(<v)(v>())(e l)cailotev quem nos uocamus ektimorum, ac1) Hier scheint ein i ausradirt. 2) ab die Hds. 3) Aus oportet corrigirt. 4) Lücke freigelassen, am Rande: av5l;,uozs. 5) Ein de ist im Ambros. S. 119 am Anfang der Zeile sichtbar. 1) ywovL. 1) Folgt eine Rasur von 1 Buchstaben.

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 10-29 Image - Page 10 Plain Text - Page 10

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 10
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/681

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.