Abhandlungen zur Geschichte der Mathematik.

- 115 remanente unitate colle|gimus, aggregamus. et in.ccc.xli summam crescere indu bitanter aduertimus. Ad eandem equidem consequentiam 1 quincuplorum 1. io ultimus terminus quadruplis, sexuplorum | quintuplis, septuplorum sexuplis, octuplorum septulplis, nonuplorum octuplis, decuplorum nonuplis, 1 undecuplorum decuplis est et deinceps uno semper milnor ultimi termini ad reliquos multiplicitus 1 est, qulam ipsorum ad inuicem terminorum comparatione. et secundum prgmonstratam in paucis rationem et in ceteris 1 omnium terminorum summam diligens calculator inue|niet. 1 Si quem autem in multiplicando et diuidendo exlercitatum abacistam i.20 quasi diuinando eludere | uoles, ut quem ipse mente conceperit numerum promte 1 edicas, numerum ab eo mente conceptum iube 1 primo duplicare, deinde triplicare, postmodum in duo diuidere et medietate abiecta alteram triplicare, dehinc quot ex illa multiplicatione collegit i! nouenarios requirere f- 19 et quot tibi responderit nouenalrios, totidem eum cogitasse dices unitates. Item numerum 1 mente conceptum iube duplicare, duplicatum quincuiplicare, abiecta medietate alteram triplicare et 1 quot interrogatus se collegisse responderit quindenarios, I totidem concepisse comprobatur unitates. Item numerum meinte conceptum iube primo triplicet, deinde quincuplilcet, ad ultimum terciam, remotis duabus, sexies dulcat. tunc interrogatus, quot trigenarios se collegisse res ponderit, tot cogitasse pronunciabitur unitates. 1. io Item numerum mente conceptum iube primo triplicare, trilplicatum quadruplicare, deinde medietatem ablicere, alteram quineuplicare, idem terciam bisse remolto seseuplare. his aetis interroga, quot sexageni 1 ex illa multiplicatione collecti sunt. et quot tibi respon|derit sexagenos, totidem concepisse perhibetur uniltates. Item numerum quemlibet cogitauerit iube dulplicare, duplicato quinque addere, inde totum insimul 1 quincuplicare, quineuplicatum decies ducere. quo 1 peracto, quot centenos multiplicatio collegerit i. 20 interrogalbis. seiens autem quod de illa, quam prgdiximus, quinarii adielctione cecl. produeti sunt, hune numerum de ea, quam tibi dixierit, suinma redices et quot centenarii remanserint, 1 tot eum cogitasse pronunciabis unitates. | Quum in superioribus de numerorum multiplicatione, que 1 memorie occurrere potuerunt, quanta po'ltuimus breuitate perstrinximus, superest, ut.1 de diuisone 1 aliquid dicere aggrediamur. Diuisio igitur alia simplex, 1 alia composita. Composita alia continua, alia interlmissa. Simplex diuisio est, ubi quotquot fuelrint diuidendi, unus tantum caracter diuisor adlhibetur. Composita, ubi plures applicantur diuiso|res, siue unus siue plures fuerint diuidendi. que, 1 si diuisores continuatim dispositi fuerint, continula dicitur, intermissa uero, si diuisores aliquot interluacantibus areubus fuerint inter- i.io rupti. Diuisiones ergo | pro diuisorum ratione et uocabula sortiuntur et regulas. 1 et sicut in multiplicationibus per multiplicatorum denolminationes 8*

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 112-131 Image - Page 112 Plain Text - Page 112

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 112
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/404

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.