Abhandlungen zur Geschichte der Mathematik.

E codice Parisiensi latino no. 15120. f i Incipit LIBER Radulfi laudunensis de abaco; 1 PIDIUUANTE domino aliquid in ahacum scripturi, neceslsarium duximus, t in ipso operis primordio, quid abacus sit, I quid utilitatis habeat, qua J/ ratione descriptus, cui potissimnum disciplinarum famuletur, disserere. Abacus igitur ex greco | uocabulum trahit. Grgci enim Mensam abacumil dieint. Siquidem 1 abacus mensa est philosophorum, sagaci industria reperta | et ad calculandi peritiam numeris multiplicandis et diuidendis [ commode 1. io attributa, ut incrementandi et diminuendi scienltia a natura profecta instrumenti huius adminiculo facilius 1 sub noticiam caderet, ne uel pluralitatis in immensum proten|sa numerositas, uel quantitatis in infinitum secta particularitas 1 caleulantis animum perplexo et inextricabili labore consulmernet. Huius autem mens9 longitudo.XXVII* lineis per transuer'sum ductis in spacia ter nouena distinguitur. latitudo | uero *IIII1'. lineis in longum extensis in tria interualla distribulitur. Philosophi etenim discipline huius inuentores, ut perfeletum opus fecisse uideantur, tabul9 istius spacia cubica 1 quantitate i. 2o metienda putauerunt. Sed quum cubus a primo pari 1 surgens, seilicet octonario, minori quam opus erat pluralitate proltenditur, qui uero ab his numeris, qui ternarium sequuntur, cubi fiunt, 1 prolixiori qua-m opLus esset numnerositate concrescunt, illum qui ex ternalrio est cubum elegerunt, secundum quem tabule sue interualla me tirentur. Sie enim eamn nee quicquam necessarium detrahere nec moldum excedere arbitrati sunt. Sane cubi dicuntur f. i corpora in moldum tessert formata, in quibus latitudini longitudo 11 et utriusque 9qualis est altitudo. Ad quorum formam cubicos | num.eros uel intellectuales cubos damus, qui de longo in latum atque deincle uelut in altlm 9qua progressione producti quasi in qualdratam tessere crassitudineni terna dimensione creuerunt. | Ut cum duas unitates in longum extendimus atque tertig duas 1 alias unitates e regione apponimus, planam superficiei filgurtaln in longum et latum duplici dimensione ordiri uidemius, 1 bis duo dicentes est ~IIII~'-, in tetragonam formam disponenltes. Quibus si tertiam dimensionem. 1o adiecerimus, ut ipsos *IIT1~11! bis ducamus, ueluti altitudo cubi nobis in

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 92-111 Image - Page 92 Plain Text - Page 92

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 92
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/385

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.