Abhandlungen zur Geschichte der Mathematik.

- 13 - decisio manente diametro circumferatur, ut sit axis diametrus, circumscripta figura a decisione orthogonii coni conoidalis uocetur. et si conoidalem figuram planum contingat, equidistanter autem penes contingens planum aliud planum ductum decindat aliquam decisionem conoidalis, decise decisionis basis quidem uocetur decindens planum, uertex autem signum, secundum quod contingit 5 alterum planum ipsum conoidale. si itaque et dicta figura plano decindatur ad rectos axi, quod quidem decisio circulus erit, palam, quod autem detruncata decisio emiolia erit coni habentis basim eandem decisioni et altitudinem eandem, ostendere oportet. et si conoidalis due decisiones decindantur planis qualitercunque ductis, quod quidem igitur decisiones erunt acutorum angulo- o1 rum conorum decisiones, palam, si descindentia plana non recta sint ad axem, quod autem decisiones ad inuicem hanc habeant proportionem, quam habent potentia ad inuicem, que a uertice ipsorum equidistanter penes axem usque ad plana descindentia, ostendere oportet. horum autem demonstrationes non nunc tibi mittuntur. 15 Post hec autem circa elicas, quas latini uolutiones uel reuolutiones uocant, erant problematizata haec; sunt autem uelut aliud quoddam genus problematum nihil communicantia predictis; de quibus demonstrationes in hoc libro scripsimus tibi. sunt autem haec: si recta linea in plano manente altero termino equeuelociter circumdelata restituatur iterum, unde incepit, simul autem 20 linee circumdelate feratur aliquod signumn equeuelociter ipsum sibi ipsi per rectam incipiens a manente termino, signum helicem describet in plano. Dico itaque, spatium comprehensum ab elice et a recta restituta, unde incepit, tertiam partem esse circuli descripti centro quidem manente puneto, distantia autem ipsa recta pertransita a signo in una circumlatione recte. 25 Et si elicem contingat aliqua recta secundum terminum elicis, qui ultimus sit, alia autem aliqua recta circumducte et restitute linee ad rectos angulos ducatur a manente circa idem, ut incidat contingenti, dico, adductam rectam equalem esse cireuli periferie. Et si circumducta linea et signun delatum per ipsam pluribus eireum- 30 2 conoidalisl prius i in ras. m. 2, ut saepius. 4 decise] -e e corr. m. 2. 7 palam] in ras. plurium litt. m. 2. detruncata] post c ras. 1 litt. 8 emiolia] h add. m. 2. 9 conoidalis] corr. ex conoydalis m. 2. 11 descindentia] corr. ex decindentia in. 1. 13 uertice] zerticibus m. 2. Post ipsorum add. ducte(?) m. 2. 15 nunc] dumn m. 2; mg. in. 1: OVTCr forte ovz7Cu. 16 elicas] helices m. 2. quas-uocant] del. m. 2. uolutiones] uolutas m. 2. uolutiones uel reuolutiones] in ras. im. 1. 17 sunt autem velut] renou. m. 2. aliud] supra scr. m. 1. 18 nihil] renou. in. 2. predictis] -dictis renou. m. 2. 22 helicenm e corr. m. 2. 23,,infra 24" mg. m. 1. elice] h add. m. 2 ut semper fere. 26,,infra 18" mig. m. 1. 27 sit] fit m. 2. 30 "demonstrantur infra in 27" mg. m. 1. -cumnlationibus] renou. m. 2.

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 12-31 Image - Page 12 Plain Text - Page 12

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 12
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/302

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.