Abhandlungen zur Geschichte der Mathematik.

200 ad constructionis demonstrationem ostendit. Sed omnia fere Theoremata, et Problemata, quae sub Algebram cadunt facillime resoluuntur, ac per resolutionis vestigia componuntur: non quidem vulgaris Algebrae beneficio; quae resolutionis vestigia omnino confundit; sed illius, cuius Auctor est Franeiscus Vieta, vir certe de rebus mathematicis optime meritus: cui non solum nostra, sed etia superior aetas haud scio an ullum huius scientiae laude parem, nedurn superiorem inuenerit. etenim Resolutio procedens per species immutabiles, non autem per nuineros mutationi, quacunque operatione tractentur, obnoxios; sua vestigia clara relinquit, per quae non est diffieilis ad compositionem reditus: compositio enim in Problematibus, sine per Algebram, sine Antiquorü methodo resolutis, a fine resolutionis, ac principiun per resolutionis vestigia regreditur: in Theorematibus vero quoruin veritas per Algebram exploratur, eodem ordine quo inuenta est Theorematis veritas, demonstratio procedit. At Theoremata vel Problemata, quae sub Algebram non cadunt qualia sunt ea, quae per comparationem angulorum demonstrantur, resoluuntur, et componuntur methodo ab antiquis tradita, cuius exempla extant in libris Archimedis, Apollonii, et Pappi, aliorumq; veterum ac recentium. Et quamuis ea methodo omnia Theoremata et Problemata resolui, et componi possint; tamen ea, quae sub Algebram cadunt, pletumque facilius ac expeditius per Algebram resoluuntur, ac deinde per resolutionis vestigia componuntur. Haec omnia exemplis, atque etiam praeceptis ubi locus exiget perspicua fient. Primun igitur proponam. Exempla ad inuentionem Theorematum, eorumq; demonstrationem pertinentia; deinde ad resolutionem, et compositionemn Problematum; primis enim quatuor Theorematibus in Problematum resolutionibus et compositionibus saepe utemur. Im Folgenden geben wir den Gang der Propositio Prima und des Theorema I an und werden die übrigen zehn Lehrsätze nur kurz anfihren. Propositio Prima. Eine gerade Linie wird in zwei beliebige Theile getheilt und über die Summe und die Differenz dieser zwei Theile ein Rechteck construirt. Wie lässt sich die Fläche dieses Rechtecks durch andere über die Theile dieser Linie construirte Flächen ausdrücken? Es sei die gerade Linie in zwei Theile A und B getheilt, während A > B ist. So hat man algebraisch (A + B) (A - B) = A2 - B2. Die Fläche A2 - B2 ist also dem Rechteck gleich, welches mit (A - B) und (A - B) als Seiten construirt wird. Daraus wird gebildet der

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 196-215 Image - Page 196 Plain Text - Page 196

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 196
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/205

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.