Abhandlungen zur Geschichte der Mathematik.

- 187 - sic se habet. Ac centro autem ad circularemi usque lineam (III1) in equa* ) spatia ipsa recta linea secetur quibus. IIII. V.eiusdem quantitatis superaddatur punctumque ibi figatur in quo angulus terminabitur. et sic in ceteris tribus ut per puncta quadrati dedueantur latera. hanc circuli quadrate que auctoritatem in sesquiquarta proportione retineat qui in priori contemplari teduerit.') Cognita omnia consonantia fistularum in organis niensure ratio ita inuestiganda est: prima fistula ad arbitrium mensoris tendatur. eiusdem latitudinis omnes erunt. Secunda ita metiatur a prima. Vide latitudinis eius qui uocatur diametrum deinde in ipsa longitudine prime fistule excipiatur octaua pars diametri. Hinc usque ad plectrum sumuntur. XX. equales partes. Nona parte demota. VIII. partes que restant erit longitudo secunde. In e e secunde longitudine excipiantur II. VIII. partes diametri. reliquum diuidatur in IX. nona parte desumpta quod restat erit longitudo tereie. Tunc mnensura reuertatur ad primam. In qua excipiatur tercia pars diametri. hinc usque ad plectrum diuidatur in 1111. Quarta parte desumpta erit longitudo quarte in qua completum est diatesseron duobus tonis semitonioque dimensum. Item reducatur dimensio ad primam. In eius longitudine excipiatur medietas diametri inde 'diuidatur in tria tercia parte ablata erit longitudo quinte. In cuius longitudine exeipiatur VIII. pars diametri inde diuidatur in. VIII. nona parte detracta erit longitudo sexte. Inter hanc et septimam interponatur sinemenon. Ibi remittatur mensura ad quartam. In quarta excipiatur medietas diametri. quod remanet diuidatur in quatuor quarta parte sublata. quod remanet erit sinemenon. Deinde a mensura sexte disponatur septima. diametrum sexte partiatur in. VIII. Octana parte excepta in longitudine reliquum diuidatur. in. IX. nona parte detraeta quod residuum est erit longitudo septime. Octauaque ultima ad mensuram prime disponatur. Totum diametrum prime excipiatur. inde quod restat diuidatur in duo medietate sublata longitudo erit octaue. ad hanc erit diapente a quinta per tonum tonum semitonium et tonum. Eadem mensura in sequentibus. VII. seruetur. Ita fiet ut prima *) in V? 7 1) Das Verfahren der Quadratur besteht darin, den Radius - in 5 Theile zu 2 theilen und 4 davon der Länge desselben hinzuzufügen. Diese Länge soll die Quadratseite sein. Man erhält daher den Flächeninhalt: f= 12 + 4)2 39,69

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 176-195 Image - Page 176 Plain Text - Page 176

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 176
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/192

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.