Abhandlungen zur Geschichte der Mathematik.

- 175 nulla proportione iungatur ad alterinsecum positas. Nam IIII ad primam existit dupla. Inter quas II et III numquid ad ipsas et inter se aliqua proportione conferuntur? Et hanc quam esse dicemus? Ex illis quippe qui in usu habentur quosque diligentissimi numerorum inspectores memorie posterorum scriptis tradiderunt quis tante subtilitatis hic aliquando ostendat. Annon manifestum huiusmodi proportione neque in multiplici genere partiente inueniri? Si enim II. ad primam multiplex exisset et item III ad II. IIII. que ad III. profecto duplex ex III proportionibus multiplicis necessario constaret. Est enim IIII ad primum dupla. Sed hoc falsum esse quis nesciat? cui sit ignotum minimam esse omnium multiplicium duplicem proportionem?1) Quare ipsam impossibile est ex multiplicibus constare. Quod si non ex istis multo minus ex aliis supra memoratis quod et illa duplex proportio multo minor inuenitur. Restat ergo aut superparticulari proportione ad se conferantur aut superpartiente aut nulla. Prima superparticularem attemptemus. Inuenimus enim multiplicem ex tribus superparticularibus constitutum id est VI ad III comparatos inter quos IIII et V ut omnibus notum est sesquitertiam sesquiquartam sesquiquintam proportionem efficiunt. Quamobrem putet aliquis in diuisione quadrati inter I lineam et IIII que se inuicem duplici collatione respiciunt. talem secundam habere constitui am am quod prime III. habent partem talem deinde III. quod secunde contineat ae quartam cujus et III. IIII linea suscipiat quintam. Sed nichil minus nerum. ain hoc autem ea ratio probat quod VIII esse duplicem secunde opportet. Quippe quaternario precedit IIII. Omnes autem quaternario se precedentes duplices erunt ad illas relate quod se numeri iuxta naturalem ordinem consequuntur quem ad modum mox II sequitur I. Quare necesse erit ut ad ipsam secundam am duplex inueniatur. VIII sicut ad I. quarta. Que si illud constiterit maior 122 = 144.2 102 100 82 64 6' 36 42 -- 16 22 -- 4 so kann man danach zunächst alle Seiten derjenigen Quadrate finden, deren Inhalt die Hälfte von jenem also resp. 72, 50, 32, 18, 8, 2 betragt, indem man die Seiten 12, 10, 8, 6, 4, 2 als Diagonalen der zu suchenden Quadrate ansieht wie in Fig. Wie aber die Zwischenwerthe der Flächeninhalte 3, 5, 7... zu finden dazu bedarf es einer andern Construction. 1) Wäre 3= mn 2 4 = n * 3, so müsste 4 mn2 ~ 2 oder m2 == 2 sein, was für m als ganze Zahl nicht möglich.

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 156-175 Image - Page 156 Plain Text - Page 156

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 156
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/180

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.