Abhandlungen zur Geschichte der Mathematik.

170 - rursus usque ad tercium uel ad quartum uel si ita contingit ad XXX equinoctium dilatione facienda. Cum impedimento tollendo quo pacto uno quodam die sole lucente meridies inuestigetur monstrare curemus. Sit enim positus gnomo in mnedio quolibet circulo. Is autem ita temperatus esto ut umbra illius paulo ante meridiem intra circinationem sese recipiat et item paulo plus meridiem eandem excedat. fit isque pun|_ ctis ubi umbra uel ingressa est uel egressa spatium illud _ inter II puncta per medium diuidatur. Ad quam medietatem _____ ab eo puncto ubi gnomo affixus est ducatur linea. Nimi_- _ | rum hac arte centrum solis meridianumn deprehensum affirmamus iuxtaque orologia regulare potes. sicut equinoctiali -_l__l_ ita et ceteris quibusque tocius anni dierum curriculus. Cum _ ____|_ igitur tanta sit dignitas circuli iure non ipse ad quadra__ __ tum sed potius ad ipsum referri uidetur quadratum. His etenim finitis tandem ad excessuras ueniendum quarum in tantum difficilius uidetur ad inueniendum mensura ut plerique resectas particulas intrutinam mittant. libreque lanciibus examinent equalitate(m). Dico igitur XX et VIII partes quot est centesima LIIII si ad quadrilaterum respicias. ab excessuris contineri. quarum dimidia pars excessuris circulil) dimidia uero quadrati deputatur excessuris. Hoc autem probatur ita. Quadratura circuli constituta. tale circa gyrum circuli quadratum ascribe quod partes eius attingat extremas. Id perfecto in singulis lateribus CLXIIII mensuras iuxta diametrum circuli necessario retinebit. Hoc autem quadratum per singulos angulos X semis partibus excedit aream circularem. Cuius rei perspicatio in promptum est tibi. Nam quod decies*) XIIII C. X. C. VI reddant que est circulo ascripti continentia quadrati. Sed embadum circulare CLIIII continebat quos superant C et X. C. et VI. XLII.**) Hos autem X. LII in IIII partes equaliter diuide fiunt X et semis particulas inueniri.2) Igitur hoc ita probatum priori dubitacioni argumento duc: et quanto angulum interioris quadrati exterioris angulum uincat perquire. hoc autem fiet ita. Ab 1) Behauptet wird, dass der Ueberschuss des Kreises über das ihm gleiche Quadrat plus dem des letzteren über diesen = 28, wovon auf jede Fläche die Hälfte kommt. *) quatuordecies? *) 196-154 = 42. 2) Der Sinn ist ohne Schwierigkeit zu erkennen: Die Fläche des dem Kreise = 154 umbeschriebenen Quadrats ist 196. Daher 196 -- 154 der Ueberschuss des vierten Theils des letzteren über den, jenes: = -- 15 10 — 2

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 156-175 Image - Page 156 Plain Text - Page 156

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 156
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/175

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.