Abhandlungen zur Geschichte der Mathematik.

- 163 Quod ita probamus ad a utrumque copulaimus id est d. et e. solum pro hac e fiunt ergo complexionum III figure. Plures autem qui fierent? Nam cum sit a solum cui turn d tum e utrumque comparetur aut utrumque habebit aut unum aut alterum neutrumr et non potest habere. Quomodo enim a idein equale esset si neque d neque e equale haberet? Tot modis et B signum maioris ad easdem literas id est c e potest coinponi et c minoris totidem nota. Quorum coniunctionum ratione nichil habetur diuersum. Quod si quis dicat maiorem neutro esse maiorer minorem neutro minorem hoc minime procedit ipsique nature repugnare conuincitur. Ex eo complectendum est (cum) equalis cum maiori cum minori - -)- - - - - tractare modos complectendi secundum longitudinem et latitudinem altitudinis dimensione reiecta quod in ipsis partibus uideamus. Omnis enim eiusdem spatii figura - -' - figuris ad aliud extra relata aut equaliter est longa et lata aut equalis longa aut equaliter lata aut maior et longa et lata aut maior longitudine aut latitudine tantum. aut certe minor utroque aut minor longitudine dLumtaxat aut mensura latitudinis sola quod subiecte declarant figure quippe circa quas seeundum diuersam positionem acceptus omnes harum complexionum VIIII modi demonstrari non abnuunt. Nunc igitur cum modos ipsos numero comprehendimus nec non exemplis omnia ad intelligentiam patescunt quod sit ratio ipsorum augendi dimi/_b,( - d\ \ nuendique et quam prorsus habeant resolutionis naturam expedire curemus.1) Omnium que tam longa quam lata sunt altera nullatenus in alteram resoluitur. Cuius rei non alia causa uidetur nisi per omnia uidetur conueniens equalitas. Ergo hic modus a ratione auctionis et diminutionis excluditur. *) Ergo uolumus zu erganzen. 1) Die ganze Betrachtung bezieht sich auf die Verwandlung von Figuren gleichen Flächeninhaltes in einander. Sie hat wesentlich den Zweck zu zeigen, dass die Verwandlung des Kreises in ein Quadrat nicht unmittelbar geschehen könne, weil beide Dimensionen von Kreis und Quadrat verschieden (entsprechend Fall IIII oder VII). Man hat daher den Kreis zunächst in ein solches Vierseit zu transformiren,' dessen eine Dimension oder Seite mit der des Kreises seinem Durchmesser übereinstimme, wodurch das Problem auf einen der Fälle II oder IIIreduzirt ist. 11*

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 156-175 Image - Page 156 Plain Text - Page 156

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 156
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/168

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.