Abhandlungen zur Geschichte der Mathematik.

- 159 - est diagonum propositi quadrati quantum ad magistri reginboldi sententiam. nempe ego cum omne diagonium nihil plus mninusue nisi duplum equaliter prouehat uideamus sicut V in se ducti XXV, an eodem modo VII uncia in VII uncias ducti secundum tetragonicam multiplicationem quinquagenarium accumulant qui nimirum ad XX dupla proportionem confert.(?) Minime septies; namque VII XLVIIII multiplicant. Inde septies untia nouissime untia in untiam assem sextantem et dimidiam sextulam coaceruant.1) Quorum assis XLVIIII (adiectis) quinquagenarium pluritatem complicant. Superat quantitas sextantis et dimidie sextule (id ipsum) nihilominus integro numero licet approbare. Et quoniam ipse confirmat diagonium quadrati et latus eiusdem in tali proportione reperiri qualis est inter X ac XVII*) quorum duodenarium claudit et eius insuper V duodecimas quod appellant quincuncem**) utrosque in se XII duodecies et XVII decies septies congregemus. que summa proueniet? Nimirum'ex priori C quinquaginta IIII (?) ex posteriore CCLXXXVIIII colligentur sed diagoniumn nihil a duplo relinquit nec amplius curare debet. At uero ducentum sexaginta XXXVIIII unitate excedunt duplam proportionem et CLIII***) per comparationem reducti.2) Tamen absque dubitationis scrupulo constet diagonum non habere in se (in) quincuncem et latus sui quadrati. Quare si in duplo quadrato mensura lateris ab hoc diagonio nihil distat manifestum est ita ut nullatenus refutari possit quid (ne ipsum quid) latus dupli minoris lateris eiusque quincuncem possit includere. Sed his tandem qualicumque modo finitis illud uolumus intimare quadrati formam vix stantibus difficultatibus receptam si quis nouerit equabilitatem collocare. ita sane ut quanto circulus quadrati (circulus) tanto quadrati latera circuli excessionibus superentur. His profecto preciosissimam illam et doctis uiris sepe ac diu perquisitam que uocatur geometrice peritia circuli quadraturam. Atque (hic) excollocatio quomodo et per artem fiat monstrare curabo. Sed hoc post modum fiet nec uero istic quiescao.(?) 1) (7 + = 49 — + t + (126 144) *) L. XII an XVII. **) cf. unten. ***) Wohl: ejus CXLIIII. 2) Der Sinn dieser unklar ausgedrückten Stelle ist unzweifelhaft: 2 * 144 288 172 = 289 d. h. das nach der im Text angegebenen Regel bestimmte Quadrat des doppelten Inhalts wird um eine Einheit zu gross gefunden.

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 156-175 Image - Page 156 Plain Text - Page 156

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 156
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/164

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.