Abhandlungen zur Geschichte der Mathematik.

- 145 requiro num quilibet III. interiores sint diffinite trianguli forme. III interiores angulos propositos teneo hos angulo II. per se constituto siue circa triangulos quos*) anguli sint requiro itaque triangulum equilaterum constituo cuius anguli sint a. e. f. b. e. f. c. e. f. hos compono II. 1. (?) rectis et equale spacium inuenio. Idem accidit si quidem in ortogonis eiusdem rei gratia nichil diuisum proueniet. Et postremo cum VI**) existant triangulorum genera nullum esse poterit cuius anguli huic comparationi dissentiant. sicut harum descriptionum probatur exemplis. Et hic interiorum angulorum consensus ad rectos. Exteriores c.(?) uerum supra equalitatis modum longe exuberant. In hac uero demonstratione dominus Wazo A M \ /K B |\B T ascribit figuram hanc M. Magister adeloxanus hanc B. Ratechitius hanc uidelicet T. Et preter hos alius quidam hanc A. et alii alias. Scilicet nos potius animum proposito operi commodemus. Igitur quadratura circuli reductio quadrati uidetur esse ipsius circuli in quadratum et adequatio figure ad se inuicem utriusque. hanc quadraturam ita constituunt ut a puncto in octo diuidant portiones desumptaque portione octaua latera quadrati ducant. Sunt qui rursus diametrum a medietate quadrati partiant. reiecta quatuor angulos statuant quadrati. Preterea existunt qui ambitum circuli in quatuor distrahunt partes ex quibus quadratum struunt quas aiunt illi circulo equales. Sed hi omnes a ueritate longe absunt eo quod ubi equalitas inuestiganda sit non attendunt. Nam quicumque demonstrare uoluit formarum quarumlibet equalitatem. Hunc primo aduertire oportet ubi illa uisetur equalitas. Omnium enim figurarum equalium alie solo numero coequantur alie spatio tantum alie utroque. Ergo cum sint figure circulus et quadratum necesse est aut primo aut ultimo aut medio modo equalitatis comparatione. sed numero solo, nequeunt equari. Nam quicumque solius numeri seruant equalitatem ut triginta sex triangulos ideoque tetragonum in illis areas numquam eiusdem repperient quantitatis. Si equales sunt aree quadrati et circuli. Non igitur equatur numero solo. Neque uero numero et spacio has quisquam formulas probabit equales. Hoc autem ita probo. Quecumque et equalitatis hunc retinent modum in his communis numerus secundum regulam utriusque *) quales? **) Wohl III. Abh. zur Gesch. der Mathem. IV. 10

/ 917
Pages

Actions

file_download Download Options Download this page PDF - Pages 136-155 Image - Page 136 Plain Text - Page 136

About this Item

Title
Abhandlungen zur Geschichte der Mathematik.
Canvas
Page 136
Publication
Leipzig,: B. G. Teubner,
1877-99.
Subject terms
Mathematics -- Periodicals.
Mathematics -- History.

Technical Details

Link to this Item
https://name.umdl.umich.edu/acd4263.0002.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acd4263.0002.001/150

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd4263.0002.001

Cite this Item

Full citation
"Abhandlungen zur Geschichte der Mathematik." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd4263.0002.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.