Colloquium publications.
Annotations Tools
FUNCTIONS OF SEVERAL COMPLEX VARIABLES. 115 which every period (P) can be expressed linearly with integral coefficients: (P) = m'(P') + m"(P") + - + m(k)(P(k)). Such a set of periods is called a primitive scheme, or set, of periods.* A periodic function which is a constant or which depends on fewer than n arguments will evidently not come under this definition. This will also be the case if, on making a suitable non-singular linear transformation of the arguments, f(zi,., zn) goes over into a function of fewer than n arguments. All other periodic functions do come under this definition, the functions excluded being precisely those which admit infinitely small periods. It is a theorem due to Riemannt that a k-fold periodic function of p-independent variables cannot existt when k > 2p. On the other hand, the Abelian functions have led to 2p-fold periodic functions of p complex arguments, and such functions can also be formed by means of quotients of theta functions of p arguments. Theta Functions with Several Arguments.-The fundamental theta function of a single argument~ can be defined by a series as follows: = (u) = i(u, a) = C E ean+2nu C + 0, n=-00 where a = r + si and r = T(a) < 0. * I avoid the term primitive system of periods because of the confusion which would thus be introduced, due to the other sense, above mentioned, in which the words system of periods are used. t Journ. fur Math., 71 (1859), p. 197 =Werke, 1 ed., p. 276; 2d ed., p. 294. Cf. also Weierstrass, Berliner Monatsber., 1876, p. 680 =Werke, 2, p. 55. t The maximum number of periods which an integral function can have is p. Hermite, in Lacroix's Calcul differentiel et calcul integral, vol. 2, 6th ed., 1862, p. 390. ~ This function appears in Fourier's Theorie analytique de la chaleur, 1822, p. 333. It is usually thought of as due to Jacobi, who was the first to recognize its importance in the theory of the elliptic functions; Fundamenta nova, 1829, =Werke, 1, p. 228.
-
Scan #1
Page #1
-
Scan #2
Page #2 - Title Page
-
Scan #3
Page #3
-
Scan #4
Page I
-
Scan #5
Page II
-
Scan #6
Page III
-
Scan #7
Page #7
-
Scan #8
Page #8 - Title Page
-
Scan #9
Page #9
-
Scan #10
Page I - Table of Contents
-
Scan #11
Page II - Table of Contents
-
Scan #12
Page III - Table of Contents
-
Scan #13
Page #13
-
Scan #14
Page 1
-
Scan #15
Page 2
-
Scan #16
Page 3
-
Scan #17
Page 4
-
Scan #18
Page 5
-
Scan #19
Page 6
-
Scan #20
Page 7
-
Scan #21
Page 8
-
Scan #22
Page 9
-
Scan #23
Page 10
-
Scan #24
Page 11
-
Scan #25
Page 12
-
Scan #26
Page 13
-
Scan #27
Page 14
-
Scan #28
Page 15
-
Scan #29
Page 16
-
Scan #30
Page 17
-
Scan #31
Page 18
-
Scan #32
Page 19
-
Scan #33
Page 20
-
Scan #34
Page 21
-
Scan #35
Page 22
-
Scan #36
Page 23
-
Scan #37
Page 24
-
Scan #38
Page 25
-
Scan #39
Page 26
-
Scan #40
Page 27
-
Scan #41
Page 28
-
Scan #42
Page 29
-
Scan #43
Page 30
-
Scan #44
Page 31
-
Scan #45
Page 32
-
Scan #46
Page 33
-
Scan #47
Page 34
-
Scan #48
Page 35
-
Scan #49
Page 36
-
Scan #50
Page 37
-
Scan #51
Page 38
-
Scan #52
Page 39
-
Scan #53
Page 40
-
Scan #54
Page 41
-
Scan #55
Page 42
-
Scan #56
Page 43
-
Scan #57
Page 44
-
Scan #58
Page 45
-
Scan #59
Page 46
-
Scan #60
Page 47
-
Scan #61
Page 48
-
Scan #62
Page 49
-
Scan #63
Page 50
-
Scan #64
Page 51
-
Scan #65
Page 52
-
Scan #66
Page 53
-
Scan #67
Page 54
-
Scan #68
Page 55
-
Scan #69
Page 56
-
Scan #70
Page 57
-
Scan #71
Page 58
-
Scan #72
Page 59
-
Scan #73
Page 60
-
Scan #74
Page 61
-
Scan #75
Page 62
-
Scan #76
Page 63
-
Scan #77
Page 64
-
Scan #78
Page 65
-
Scan #79
Page 66
-
Scan #80
Page 67
-
Scan #81
Page 68
-
Scan #82
Page 69
-
Scan #83
Page 70
-
Scan #84
Page 71
-
Scan #85
Page 72
-
Scan #86
Page 73
-
Scan #87
Page 74
-
Scan #88
Page 75
-
Scan #89
Page 76
-
Scan #90
Page 77
-
Scan #91
Page 78
-
Scan #92
Page 79
-
Scan #93
Page 80
-
Scan #94
Page 81
-
Scan #95
Page 82
-
Scan #96
Page 83
-
Scan #97
Page 84
-
Scan #98
Page 85
-
Scan #99
Page 86
-
Scan #100
Page 87
-
Scan #101
Page 88
-
Scan #102
Page 89
-
Scan #103
Page 90
-
Scan #104
Page 91
-
Scan #105
Page 92
-
Scan #106
Page 93
-
Scan #107
Page 94
-
Scan #108
Page 95
-
Scan #109
Page 96
-
Scan #110
Page 97
-
Scan #111
Page 98
-
Scan #112
Page 99
-
Scan #113
Page 100
-
Scan #114
Page 101
-
Scan #115
Page 102
-
Scan #116
Page 103
-
Scan #117
Page 104
-
Scan #118
Page 105
-
Scan #119
Page 106
-
Scan #120
Page 107
-
Scan #121
Page 108
-
Scan #122
Page 109
-
Scan #123
Page 110
-
Scan #124
Page #124 - Title Page
-
Scan #125
Page #125
-
Scan #126
Page I - Table of Contents
-
Scan #127
Page II - Table of Contents
-
Scan #128
Page III - Table of Contents
-
Scan #129
Page #129
-
Scan #130
Page 111
-
Scan #131
Page 112
-
Scan #132
Page 113
-
Scan #133
Page 114
-
Scan #134
Page 115
-
Scan #135
Page 116
-
Scan #136
Page 117
-
Scan #137
Page 118
-
Scan #138
Page 119
-
Scan #139
Page 120
-
Scan #140
Page 121
-
Scan #141
Page 122
-
Scan #142
Page 123
-
Scan #143
Page 124
-
Scan #144
Page 125
-
Scan #145
Page 126
-
Scan #146
Page 127
-
Scan #147
Page 128
-
Scan #148
Page 129
-
Scan #149
Page 130
-
Scan #150
Page 131
-
Scan #151
Page 132
-
Scan #152
Page 133
-
Scan #153
Page 134
-
Scan #154
Page 135
-
Scan #155
Page 136
-
Scan #156
Page 137
-
Scan #157
Page 138
-
Scan #158
Page 139
-
Scan #159
Page 140
-
Scan #160
Page 141
-
Scan #161
Page 142
-
Scan #162
Page 143
-
Scan #163
Page 144
-
Scan #164
Page 145
-
Scan #165
Page 146
-
Scan #166
Page 147
-
Scan #167
Page 148
-
Scan #168
Page 149
-
Scan #169
Page 150
-
Scan #170
Page 151
-
Scan #171
Page 152
-
Scan #172
Page 153
-
Scan #173
Page 154
-
Scan #174
Page 155
-
Scan #175
Page 156
-
Scan #176
Page 157
-
Scan #177
Page 158
-
Scan #178
Page 159
-
Scan #179
Page 160
-
Scan #180
Page 161
-
Scan #181
Page 162
-
Scan #182
Page 163
-
Scan #183
Page 164
-
Scan #184
Page 165
-
Scan #185
Page 166
-
Scan #186
Page 167
-
Scan #187
Page 168
-
Scan #188
Page 169
-
Scan #189
Page 170
-
Scan #190
Page 171
-
Scan #191
Page 172
-
Scan #192
Page 173
-
Scan #193
Page 174
-
Scan #194
Page 175
-
Scan #195
Page 176
-
Scan #196
Page 177
-
Scan #197
Page 178
-
Scan #198
Page 179
-
Scan #199
Page 180
-
Scan #200
Page 181
-
Scan #201
Page 182
-
Scan #202
Page 183
-
Scan #203
Page 184
-
Scan #204
Page 185
-
Scan #205
Page 186
-
Scan #206
Page 187
-
Scan #207
Page 188
-
Scan #208
Page 189
-
Scan #209
Page 190
-
Scan #210
Page 191
-
Scan #211
Page 192
-
Scan #212
Page 193
-
Scan #213
Page 194
-
Scan #214
Page #214
-
Scan #215
Page #215
-
Scan #216
Page 195
-
Scan #217
Page 196
-
Scan #218
Page 197
-
Scan #219
Page 198
-
Scan #220
Page 199
-
Scan #221
Page 200
-
Scan #222
Page 201
-
Scan #223
Page 202
-
Scan #224
Page 203
-
Scan #225
Page 204
-
Scan #226
Page 205
-
Scan #227
Page 206
-
Scan #228
Page 207
-
Scan #229
Page 208
-
Scan #230
Page 209
-
Scan #231
Page 210
-
Scan #232
Page 211
-
Scan #233
Page 212
-
Scan #234
Page 213
-
Scan #235
Page 214
-
Scan #236
Page 215
-
Scan #237
Page 216
-
Scan #238
Page 217
-
Scan #239
Page 218
-
Scan #240
Page 219
-
Scan #241
Page 220
-
Scan #242
Page 221
-
Scan #243
Page 222
-
Scan #244
Page 223
-
Scan #245
Page 224
-
Scan #246
Page 225
-
Scan #247
Page 226
-
Scan #248
Page 227
-
Scan #249
Page 228
-
Scan #250
Page 229
-
Scan #251
Page 230
Actions
About this Item
- Title
- Colloquium publications.
- Author
- American Mathematical Society.
- Canvas
- Page 115
- Publication
- New York [etc.]
- 1905-
- Subject terms
- Mathematics.
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acd1941.0004.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acd1941.0004.001/134
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd1941.0004.001
Cite this Item
- Full citation
-
"Colloquium publications." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd1941.0004.001. University of Michigan Library Digital Collections. Accessed June 15, 2025.