Colloquium publications.
Annotations Tools
76 THE BOSTON COLLOQUIUM. circle of convergence is not a natural boundary. Then the series defines within this circle an analytic function. In the region of divergence without the circle the value of the function may be obtained by the familiar process of analytic continuation. Theoretically the determination of the function is a satisfactory one, for Poincare * has shown that the function throughout the domain in which it is regular can be obtained by means of an enumerable set of elements, P(x - an). Practically, however, when Weierstrass' process is employed for analytic continuation, the labor is so excessive as to render the process nearly valueless except for purposes of definition. Hence to-day a search is being made for a workable substitute. I may refer particularly in this connection to the investigations by Borel and Mittag-Le/Jler. As I consider the work of the former to be both suggestive and practical, I have taken it as the basis of my second lecture. A second aspect of our topic, intimately connected with the continuation of the function defined by (1), is the determination of the position and character of its singularities in the region where the series diverges. This subject is treated in Lecture 3. When the circle of convergence is a natural boundary, it does not appear to be impossible, despite the earlier view of Poincare to the contrary,t to discover, at least in a certain class of cases, an appropriate, although a non-analytic mode of continuing the function across the boundary into other regions where it will be again analytic. The thesis of Boreland its recent continuation in the Acta JMathematica, together with some excellent remarks by Fabry,. appear to be about all that has been done in this direction. A very brief discussion of the subject will be given in the fourth lecture in connection with series of polynomials and of rational fractions. Lastly, we have the conundrum of the truly divergent power series - the series which converges only when x = 0. It is upon * Rendiconti del COrcolo Matematico di Palermo, vol. 2 (1888), p. 197, or see Borel's Theorie des fonctions, p. 53. tThe conclusions of Poincare and Borel are not actually inconsistent, but a new point of view is taken by the latter. + Compt. Rend., vol. 128 (1899), p. 78.
-
Scan #1
Page #1
-
Scan #2
Page #2 - Title Page
-
Scan #3
Page #3
-
Scan #4
Page #4 - Title Page
-
Scan #5
Page #5
-
Scan #6
Page #6
-
Scan #7
Page #7
-
Scan #8
Page VII
-
Scan #9
Page VIII
-
Scan #10
Page IX
-
Scan #11
Page X
-
Scan #12
Page XI - Table of Contents
-
Scan #13
Page XII - Table of Contents
-
Scan #14
Page 1
-
Scan #15
Page 2
-
Scan #16
Page 3
-
Scan #17
Page 4
-
Scan #18
Page 5
-
Scan #19
Page 6
-
Scan #20
Page 7
-
Scan #21
Page 8
-
Scan #22
Page 9
-
Scan #23
Page 10
-
Scan #24
Page 11
-
Scan #25
Page 12
-
Scan #26
Page 13
-
Scan #27
Page 14
-
Scan #28
Page 15
-
Scan #29
Page 16
-
Scan #30
Page 17
-
Scan #31
Page 18
-
Scan #32
Page 19
-
Scan #33
Page 20
-
Scan #34
Page 21
-
Scan #35
Page 22
-
Scan #36
Page 23
-
Scan #37
Page 24
-
Scan #38
Page 25
-
Scan #39
Page 26
-
Scan #40
Page 27
-
Scan #41
Page 28
-
Scan #42
Page 29
-
Scan #43
Page 30
-
Scan #44
Page 31
-
Scan #45
Page 32
-
Scan #46
Page 33
-
Scan #47
Page 34
-
Scan #48
Page 35
-
Scan #49
Page 36
-
Scan #50
Page 37
-
Scan #51
Page 38
-
Scan #52
Page 39
-
Scan #53
Page 40
-
Scan #54
Page 41
-
Scan #55
Page 42
-
Scan #56
Page 43
-
Scan #57
Page 44
-
Scan #58
Page 45
-
Scan #59
Page 46
-
Scan #60
Page 47
-
Scan #61
Page 48
-
Scan #62
Page 49
-
Scan #63
Page 50
-
Scan #64
Page 51
-
Scan #65
Page 52
-
Scan #66
Page 53
-
Scan #67
Page 54
-
Scan #68
Page 55
-
Scan #69
Page 56
-
Scan #70
Page 57
-
Scan #71
Page 58
-
Scan #72
Page 59
-
Scan #73
Page 60
-
Scan #74
Page 61
-
Scan #75
Page 62
-
Scan #76
Page 63
-
Scan #77
Page 64
-
Scan #78
Page 65
-
Scan #79
Page 66
-
Scan #80
Page 67
-
Scan #81
Page 68
-
Scan #82
Page 69
-
Scan #83
Page 70
-
Scan #84
Page 71
-
Scan #85
Page 72
-
Scan #86
Page 73
-
Scan #87
Page 74
-
Scan #88
Page 75
-
Scan #89
Page 76
-
Scan #90
Page 77
-
Scan #91
Page 78
-
Scan #92
Page 79
-
Scan #93
Page 80
-
Scan #94
Page 81
-
Scan #95
Page 82
-
Scan #96
Page 83
-
Scan #97
Page 84
-
Scan #98
Page 85
-
Scan #99
Page 86
-
Scan #100
Page 87
-
Scan #101
Page 88
-
Scan #102
Page 89
-
Scan #103
Page 90
-
Scan #104
Page 91
-
Scan #105
Page 92
-
Scan #106
Page 93
-
Scan #107
Page 94
-
Scan #108
Page 95
-
Scan #109
Page 96
-
Scan #110
Page 97
-
Scan #111
Page 98
-
Scan #112
Page 99
-
Scan #113
Page 100
-
Scan #114
Page 101
-
Scan #115
Page 102
-
Scan #116
Page 103
-
Scan #117
Page 104
-
Scan #118
Page 105
-
Scan #119
Page 106
-
Scan #120
Page 107
-
Scan #121
Page 108
-
Scan #122
Page 109
-
Scan #123
Page 110
-
Scan #124
Page 111
-
Scan #125
Page 112
-
Scan #126
Page 113
-
Scan #127
Page 114
-
Scan #128
Page 115
-
Scan #129
Page 116
-
Scan #130
Page 117
-
Scan #131
Page 118
-
Scan #132
Page 119
-
Scan #133
Page 120
-
Scan #134
Page 121
-
Scan #135
Page 122
-
Scan #136
Page 123
-
Scan #137
Page 124
-
Scan #138
Page 125
-
Scan #139
Page 126
-
Scan #140
Page 127
-
Scan #141
Page 128
-
Scan #142
Page 129
-
Scan #143
Page 130
-
Scan #144
Page 131
-
Scan #145
Page 132
-
Scan #146
Page 133
-
Scan #147
Page 134
-
Scan #148
Page 135
-
Scan #149
Page 136
-
Scan #150
Page 137
-
Scan #151
Page 138
-
Scan #152
Page 139
-
Scan #153
Page 140
-
Scan #154
Page 141
-
Scan #155
Page 142
-
Scan #156
Page 143
-
Scan #157
Page 144
-
Scan #158
Page 145
-
Scan #159
Page 146
-
Scan #160
Page 147
-
Scan #161
Page 148
-
Scan #162
Page 149
-
Scan #163
Page 150
-
Scan #164
Page 151
-
Scan #165
Page 152
-
Scan #166
Page 153
-
Scan #167
Page 154
-
Scan #168
Page 155
-
Scan #169
Page 156
-
Scan #170
Page 157
-
Scan #171
Page 158
-
Scan #172
Page 159
-
Scan #173
Page 160
-
Scan #174
Page 161
-
Scan #175
Page 162
-
Scan #176
Page 163
-
Scan #177
Page 164
-
Scan #178
Page 165
-
Scan #179
Page 166
-
Scan #180
Page 167
-
Scan #181
Page 168
-
Scan #182
Page 169
-
Scan #183
Page 170
-
Scan #184
Page 171
-
Scan #185
Page 172
-
Scan #186
Page 173
-
Scan #187
Page 174
-
Scan #188
Page 175
-
Scan #189
Page 176
-
Scan #190
Page 177
-
Scan #191
Page 178
-
Scan #192
Page 179
-
Scan #193
Page 180
-
Scan #194
Page 181
-
Scan #195
Page 182
-
Scan #196
Page 183
-
Scan #197
Page 184
-
Scan #198
Page 185
-
Scan #199
Page 186
-
Scan #200
Page 187
-
Scan #201
Page #201
Actions
About this Item
- Title
- Colloquium publications.
- Author
- American Mathematical Society.
- Canvas
- Page 76
- Publication
- New York [etc.]
- 1905-
- Subject terms
- Mathematics.
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acd1941.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acd1941.0001.001/89
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acd1941.0001.001
Cite this Item
- Full citation
-
"Colloquium publications." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acd1941.0001.001. University of Michigan Library Digital Collections. Accessed June 18, 2025.