Mathematical philosophy, a study of fate and freedom; lectures for educated laymen, by Cassius J. Keyser.

NON-GEOMETRIC INTERPRETATION 99 (I) Ax +By +C =O into any given system (2) A'x +B'y + C'==0 and, at the same time, any given dyad of the former into any given dyad of the latter; to show this possibility, transform (I) as above indicated, then equate the two ratios of the coefficients in the resulting equation to the corresponding ratios taken from (2); these two equations (two conditions on a, b and 0) insure that (I) has (2) for its transform; but our three parameters can satisfy a third condition; notice what it is; let di(xi, yi) be the given dyad of (I), and dl'(xi', yl') the A C A' C' given dyad of (2); then yi = - x- and y'=-x '-B-; di is to be converted into di' and this gives the third condition, which is that xi=xi' cos 0+ Bx '+ ) sin O+a or an equivalent one obtained from the second equation of (t). The writing out of the three conditions and solving them for a, b and 0 involves a little finger work but no logical difficulty. You may wish to perform the task as an exercise. Again, any one of our dyad-to-dyad transformations converts any given segment into a congruent segment. I say " any one of our dyad-to-dyad transformations," for we have many, infinitely many, of them, depending on the values we assign to the parameters a, b and 0. To prove the property in question let the segment be determined by d,(x,, y,) and d2(x2, y2); in (xi -x2)2+(yl -y2)2 replace Xi, yi, X2, y2 by their transforms xi cos 0-y, sin O+a, xi sin O+y, cos o+b, X2 cos O-y2 sin 0+a, x2 sin 6+y2 cos 0+b, simplify and then note that the radical expression has suffered no change. Finally, any one of our transformations leaves the order of dyads unchanged; that is, if di, d2 and ds are converted respectively into di', d2' and da', then, if dg

/ 485
Pages

Actions

file_download Download Options Download this page PDF - Pages 82-101 Image - Page 82 Plain Text - Page 82

About this Item

Title
Mathematical philosophy, a study of fate and freedom; lectures for educated laymen, by Cassius J. Keyser.
Author
Keyser, Cassius Jackson, 1862-1947.
Canvas
Page 82
Publication
New York,: E. P. Dutton & company,
[1925]
Subject terms
Mathematics -- Philosophy

Technical Details

Link to this Item
https://name.umdl.umich.edu/aca0682.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/aca0682.0001.001/118

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:aca0682.0001.001

Cite this Item

Full citation
"Mathematical philosophy, a study of fate and freedom; lectures for educated laymen, by Cassius J. Keyser." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/aca0682.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.