Leçons sur la théorie des nombres (Modules. Entiers algébriques. Réduction continuelle.) par A. Châtelet.
Annotations Tools
124 CHAPITRE VII. Ce theoreme a ete etabli, suivant une marche analogue, par Hermite (Journal de Crelle, t. 47), qui l'enoncait: II n'y a qu'un nombre fini d'irrationalites distinctes, parmi les racines de toutes les equations algebriques a coefficients entiers de degre et de discriminant donne. 1I entendait par irrationalites non distinctes deux nombres algebriques tels que l'un fut une fonction de l'autre, rationnelle et a coefficients rationnels. Remarquons encore que la demonstration precedente peut, a la rigueur, constituer une methode de recherche des corps d'un discriminant donne; toutefois, cette methode basee sur des inegalites fournirait non seulement les corps doni le discriminant est egal a d, mais ceux pour lesquels il est inferieur (en valeur absolue), et peut-etre certains pour lesquels il est superieur. Enfin, il peut se faire qu'il n'y ait pas de corps dont le discriminant soit d. On peut indiquer a ce propos la propriete trouvee par Minkowski et qui est une consequence du theoreme I: Le discriminant d'un corps est toujours diffe'rent de ~ i. En effet, considerons un corps determine et T une base de ses entiers; dans le module c de base T, on peut trouver un point A( C, a,..., a,,) et un systeme de parametres tel que la spanne a p parametres S(oA) ne soit pas a la fois de rang I, 2,..., p, et soit au plus egal a la racine nr",em de (2) (T)I = ) dl. On en deduit, a etant l'entier du corps K correspondant a A, | N(a) l = |l O. *. a, I < [S (OA)]< [sIV/ d, ce qui demontre le theoreme, puisque N(a) est au moins egal (') a i. On peut trouver des limites inferieures plus elevees, en considerant la trace (2) au lieu de la norme, et en supposant alors que S represente I'ecart. (1) Dans le cas n = 2,p =, on a N(a) = laa1X2 = [S(OA)]2.II y a donc excep/2\ tion a la demonstration precedente, mais comme (-) est inferieur a I la propriet6 est toujours vraie. (2) Voir sur ce sujet soit la Geometrie der Zahlen soit les DiophantischeApproximationen.
-
Scan #1
Page #1
-
Scan #2
Page #2
-
Scan #3
Page #3
-
Scan #4
Page #4
-
Scan #5
Page #5
-
Scan #6
Page #6 - Title Page
-
Scan #7
Page #7
-
Scan #8
Page #8 - Title Page
-
Scan #9
Page #9
-
Scan #10
Page #10
-
Scan #11
Page #11
-
Scan #12
Page VII
-
Scan #13
Page VIII
-
Scan #14
Page IX
-
Scan #15
Page X
-
Scan #16
Page 1
-
Scan #17
Page 2
-
Scan #18
Page 3
-
Scan #19
Page 4
-
Scan #20
Page 5
-
Scan #21
Page 6
-
Scan #22
Page 7
-
Scan #23
Page 8
-
Scan #24
Page 9
-
Scan #25
Page 10
-
Scan #26
Page 11
-
Scan #27
Page 12
-
Scan #28
Page 13
-
Scan #29
Page 14
-
Scan #30
Page 15
-
Scan #31
Page 16
-
Scan #32
Page 17
-
Scan #33
Page 18
-
Scan #34
Page 19
-
Scan #35
Page 20
-
Scan #36
Page 21
-
Scan #37
Page 22
-
Scan #38
Page 23
-
Scan #39
Page 24
-
Scan #40
Page 25
-
Scan #41
Page 26
-
Scan #42
Page 27
-
Scan #43
Page 28
-
Scan #44
Page 29
-
Scan #45
Page 30
-
Scan #46
Page 31
-
Scan #47
Page 32
-
Scan #48
Page 33
-
Scan #49
Page 34
-
Scan #50
Page 35
-
Scan #51
Page 36
-
Scan #52
Page 37
-
Scan #53
Page 38
-
Scan #54
Page 39
-
Scan #55
Page 40
-
Scan #56
Page 41
-
Scan #57
Page 42
-
Scan #58
Page 43
-
Scan #59
Page 44
-
Scan #60
Page 45
-
Scan #61
Page 46
-
Scan #62
Page 47
-
Scan #63
Page 48
-
Scan #64
Page 49
-
Scan #65
Page 50
-
Scan #66
Page 51
-
Scan #67
Page 52
-
Scan #68
Page 53
-
Scan #69
Page 54
-
Scan #70
Page 55
-
Scan #71
Page 56
-
Scan #72
Page 57
-
Scan #73
Page 58
-
Scan #74
Page 59
-
Scan #75
Page 60
-
Scan #76
Page 61
-
Scan #77
Page 62
-
Scan #78
Page 63
-
Scan #79
Page 64
-
Scan #80
Page 65
-
Scan #81
Page 66
-
Scan #82
Page 67
-
Scan #83
Page 68
-
Scan #84
Page 69
-
Scan #85
Page 70
-
Scan #86
Page 71
-
Scan #87
Page 72
-
Scan #88
Page 73
-
Scan #89
Page 74
-
Scan #90
Page 75
-
Scan #91
Page 76
-
Scan #92
Page 77
-
Scan #93
Page 78
-
Scan #94
Page 79
-
Scan #95
Page 80
-
Scan #96
Page 81
-
Scan #97
Page 82
-
Scan #98
Page 83
-
Scan #99
Page 84
-
Scan #100
Page 85
-
Scan #101
Page 86
-
Scan #102
Page 87
-
Scan #103
Page 88
-
Scan #104
Page 89
-
Scan #105
Page 90
-
Scan #106
Page 91
-
Scan #107
Page 92
-
Scan #108
Page 93
-
Scan #109
Page 94
-
Scan #110
Page 95
-
Scan #111
Page 96
-
Scan #112
Page 97
-
Scan #113
Page 98
-
Scan #114
Page 99
-
Scan #115
Page 100
-
Scan #116
Page 101
-
Scan #117
Page 102
-
Scan #118
Page 103
-
Scan #119
Page 104
-
Scan #120
Page 105
-
Scan #121
Page 106
-
Scan #122
Page 107
-
Scan #123
Page 108
-
Scan #124
Page 109
-
Scan #125
Page 110
-
Scan #126
Page 111
-
Scan #127
Page 112
-
Scan #128
Page 113
-
Scan #129
Page 114
-
Scan #130
Page 115
-
Scan #131
Page 116
-
Scan #132
Page 117
-
Scan #133
Page 118
-
Scan #134
Page 119
-
Scan #135
Page 120
-
Scan #136
Page 121
-
Scan #137
Page 122
-
Scan #138
Page 123
-
Scan #139
Page 124
-
Scan #140
Page 125
-
Scan #141
Page 126
-
Scan #142
Page 127
-
Scan #143
Page 128
-
Scan #144
Page 129
-
Scan #145
Page 130
-
Scan #146
Page 131
-
Scan #147
Page 132
-
Scan #148
Page 133
-
Scan #149
Page 134
-
Scan #150
Page 135
-
Scan #151
Page 136
-
Scan #152
Page 137
-
Scan #153
Page 138
-
Scan #154
Page 139
-
Scan #155
Page 140
-
Scan #156
Page 141
-
Scan #157
Page 142
-
Scan #158
Page 143
-
Scan #159
Page 144
-
Scan #160
Page 145
-
Scan #161
Page 146
-
Scan #162
Page 147
-
Scan #163
Page 148
-
Scan #164
Page 149
-
Scan #165
Page 150
-
Scan #166
Page 151
-
Scan #167
Page 152
-
Scan #168
Page 153
-
Scan #169
Page 154
-
Scan #170
Page 155 - Table of Contents
-
Scan #171
Page 156 - Table of Contents
-
Scan #172
Page #172
-
Scan #173
Page #173
Actions
About this Item
- Title
- Leçons sur la théorie des nombres (Modules. Entiers algébriques. Réduction continuelle.) par A. Châtelet.
- Author
- Chatelet, Albert, b. 1883.
- Canvas
- Page 106
- Publication
- Paris,: Gauthier-Villars,
- 1913.
- Subject terms
- Number theory.
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/abv2175.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/abv2175.0001.001/139
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:abv2175.0001.001
Cite this Item
- Full citation
-
"Leçons sur la théorie des nombres (Modules. Entiers algébriques. Réduction continuelle.) par A. Châtelet." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/abv2175.0001.001. University of Michigan Library Digital Collections. Accessed May 3, 2025.